如何解释时间序列数据上的PCA?
Freeman et al。,2014年(最近的免费pdf 可在实验室网站上找到)中,我试图理解PCA在最近的期刊文章“使用集群计算大规模地映射大脑活动”中的用法。他们在时间序列数据上使用PCA,并使用PCA权重创建大脑图。 的数据是试平均成像数据,存储为矩阵(称为Ý在纸)与ñ体素(或成像位置在脑中)的时间点(单一刺激的长度到大脑) 。Y^Y^\hat {\mathbf Y}nnn×t^×t^\times \hat t 他们使用SVD得出(表示矩阵转置)。V⊤VY^=USV⊤Y^=USV⊤\hat {\mathbf Y} = \mathbf{USV}^\topV⊤V⊤\mathbf V^\topVV\mathbf V 作者指出 主成分(的列)是长度为向量,而得分(的列)是长度为(体素的数量)的向量,描述了每个体素在方向上的投影。由相应组件给出,在体积上形成投影,即全脑图。吨 ü ÑVV\mathbf Vt^t^\hat tUU\mathbf Unnn 因此,PC是的长度的矢量吨。如何解释PCA教程中通常表达的“第一个主要成分解释了最多的差异”?我们从具有许多高度相关的时间序列的矩阵开始-单个PC时间序列如何解释原始矩阵中的方差?我了解整个“点的高斯云到变化最大的轴的旋转”,但是不确定这与时间序列的关系。作者在陈述时所指的方向是什么:“分数(U的列)是长度为n的向量t^t^\hat tUU\mathbf Unnn (体素数),描述每个体素在相应分量给定的方向上的投影”?主分量时程如何具有方向? 要查看由主成分1和2的线性组合以及相关的脑图得出的时间序列的示例,请转到以下链接,然后将鼠标悬停在XY图中的点上。 我的第二个问题与他们使用主成分分数创建的(状态空间)轨迹有关。 这些通过取第一分数(在我上面已经概述的“视动”的例子的情况下)产生并投射单个试验(用于创建上述试验平均矩阵)到由等式主子空间:J=U⊤Y.J=U⊤Y.\mathbf J = \mathbf U^\top \mathbf Y. 从链接的电影可以看到,状态空间中的每条迹线代表整个大脑的活动。 与关联前两台PC得分的XY图的图形相比,有人能提供状态空间电影的每个“帧”意味着什么的直觉。在给定的“框架”下,将一个试验置于XY状态空间中的一个位置,将另一个试验置于另一个位置,这意味着什么?电影中XY绘图位置与问题第一部分提到的链接图中的主成分迹线有何关系?