1
从lmer模型计算效果的可重复性
我刚刚碰到了这篇论文,该论文描述了如何通过混合效应建模来计算测量的可重复性(又称可靠性,又称类内相关性)。R代码为: #fit the model fit = lmer(dv~(1|unit),data=my_data) #obtain the variance estimates vc = VarCorr(fit) residual_var = attr(vc,'sc')^2 intercept_var = attr(vc$id,'stddev')[1]^2 #compute the unadjusted repeatability R = intercept_var/(intercept_var+residual_var) #compute n0, the repeatability adjustment n = as.data.frame(table(my_data$unit)) k = nrow(n) N = sum(n$Freq) n0 = (N-(sum(n$Freq^2)/N))/(k-1) #compute the adjusted repeatability Rn = …
28
mixed-model
reliability
intraclass-correlation
repeatability
spss
factor-analysis
survey
modeling
cross-validation
error
curve-fitting
mediation
correlation
clustering
sampling
machine-learning
probability
classification
metric
r
project-management
optimization
svm
python
dataset
quality-control
checking
clustering
distributions
anova
factor-analysis
exponential
poisson-distribution
generalized-linear-model
deviance
machine-learning
k-nearest-neighbour
r
hypothesis-testing
t-test
r
variance
levenes-test
bayesian
software
bayesian-network
regression
repeated-measures
least-squares
change-scores
variance
chi-squared
variance
nonlinear-regression
regression-coefficients
multiple-comparisons
p-value
r
statistical-significance
excel
sampling
sample
r
distributions
interpretation
goodness-of-fit
normality-assumption
probability
self-study
distributions
references
theory
time-series
clustering
econometrics
binomial
hypothesis-testing
variance
t-test
paired-comparisons
statistical-significance
ab-test
r
references
hypothesis-testing
t-test
normality-assumption
wilcoxon-mann-whitney
central-limit-theorem
t-test
data-visualization
interactive-visualization
goodness-of-fit