新的Ruby,135个字节,>> H ψ(φ 3(Ω+ 1))(9)
其中H是Hardy层次结构,ψ是Madore OCF的扩展版本(将在下面说明),φ是Veblen函数。
在线尝试!
f=->a,n,b=a{c,d,e=a;a==c ?a-1:e ?a==a-[0]?[[c,d,f[e,n,b]],d-1,c]:c:[n<1||c==0?n:[f[c||b,n-1]],n,n]};h=[],k=9,k;h=f[h,p(k*=k)]while h!=0
Ungolfed :(使用函数,而不是lambdas)
def f(a,n,b)
c,d,e = a
if a == c
return a-1
elsif e
if a == a-[0]
return [[c,d,f(e,n,b)],d-1,c]
else
return c
end
else
x = c || b
if n < 1 || c == 0
return [n,n,n]
else
return [f(x,n-1,x),n,n]
end
end
end
k = 9
h = [[],k,k]
while (h != 0) do
k *= k
p k
h = f(h,k,h)
end
Madore扩展的OCF:
和(粗略地)Veblen的phi函数:
没有常规的解释:
f(a,n,b) reduces an array recursively. (if no third argument given, it takes the first argument twice.)
f(k,n,b) = k-1, k is a positive int.
f([c,d,0],n,b) = f([c,0,e],n,b) = c
f([c,d,e],n,b) = [[c,d,f(e,n,b)],d-1,c], d ≠ -1 and c ≠ 0
f([a],0,b) = [0,0,0]
f([0],n,b) = [n,n,n]
f([],n,b) = f([b],n,b)
f([a],n,b) = [f[a,n-1,a],n,n]
我的程序启动k = 9, h = [[],9,9]
。然后应用k = k*k
,h = f(h,k)
直到h == 0
和输出k
。
普通解释:
Ordinals follow the following representation: n, [], [a], [a,b,c], where n,d is a natural number and a,c are all ordinals.
x = Ord(y) if y is the syntactic version of x.
a[n,b] = Ord(f(a,n))
ω = Ord([0]) = Ord(f([a],-1,b))
n = Ord(n)
Ω = Ord([])
ψ'(a) = Ord([a])
ψ'(a)[n] = Ord(f([a],n))
φ(b,c) ≈ Ord([[0],b,c])
a(↓b)c = Ord([a,b,c]) (down-arrows/backwards associative hyper operators I designed just for ordinals)
We follow the following FS for our ordinals:
k[n,b] = k-1, k < ω
ω[n,b] = n(↓n)n
(a(↓b)0)[n,b] = (a(↓0)c)[n,b] = a
(a(↓b)c)[n,b] = (a(↓b)(c[n,b]))(↓b[n,b])a, b ≥ 0 and c > 0.
ψ'(a)[0,b] = 0(↓0)0
ψ'(a)[n,b] = (ψ'(a[n-1,a]))(↓n)ω, a > 0 and n ≥ 0. (also note that we've changed from [n,b] to [n,a].)
Ω[n,b] = ψ'(b)[n,b]
ψ'(ω∙α)≈ψ(α),上图描述的有序折叠函数。
我的计划或多或少发起k = 9
和h = Ω(↑9)9
,然后应用k ← k²
并h ← h[k,h]
直至h = 1
返回k
。
所以,如果我没这个权利,[[],9,9]
比巴赫曼-霍华德序ψ(Ω方式做大Ω Ω ...),这比θ方式大(Ω ω ω)+1。
ψ(Ω(↓9)9)>ψ(Ω(↓4)3)>ψ(Ω Ω Ω)1>ψ(Ω Ω ω ω)1>θ(Ω ω ω)+1
如果我的分析是正确的,那么我们就应该有ψ'(Ω Ω ∙X)〜=ψ*(Ω Ω ∙x),其中ψ*是正常的马度尔的PSI的功能。如果成立的话,我的顺序是大约ψ*(φ 3(Ω+ω))。
老红宝石,309个字节,H ψ” 0(Ω 9)(9)(参见修订历史记录,除了新的一个是更好的方式)