残留有限状态自动机(RFSA,在[DLT02]中定义)是NFA,具有与DFA相同的一些不错的功能。特别是,对于每种常规语言,总是存在规范的最小尺寸RFSA,并且与DFA一样,RFSA中每个州所识别的语言都是残差的。但是,虽然最小DFA状态与所有残差形成双射,但规范的RFSA状态与素数残差呈双射。这些可以成倍地减少,因此RFSA可以比DFA紧凑得多,可以表示常规语言。
但是,我无法确定是否存在一种有效的算法来最小化RFSA或硬度结果。最小化RFSA的复杂性是什么?
通过浏览[BBCF10],这似乎不是常识。一方面,我希望这很困难,因为许多关于RFSA的简单问题,例如“这个NFA是RFSA吗?” 很难,在这种情况下是PSPACE完整的。另一方面,[BHKL09]表明,在Angluin的最小适度教师模型[A87]中可以有效地学习规范RFSA,并且有效学习最小RFSA和最小化RFSA似乎应该同样困难。但是,据我所知[BHKL09]的算法并不意味着最小化算法,因为反例的大小不受限制,并且不清楚如何有效地测试RFSA的相等性以模拟反例oracle 。例如,测试两个NFA是否相等是PSPACE-complete。
参考文献
[A87] Angluin,D.(1987)。从查询和反例中学习常规集。信息与计算,75:87-106
[BBCF10] Berstel,J.,Boasson,L.,Carton,O.和Fagnot,I.(2010)。自动机的最小化。的arXiv:1010.5318。
[BHKL09] Bollig,B.,Habermehl,P.,Kern,C.和Leucker,M.(2009年)。NFA的盎格鲁式学习。在IJCAI中,9:1004-1009。
[DLT02] Denis,F.,Lemay,A。和Terlutte,A。(2002)。剩余有限状态自动机。基金会信息,51(4):339-368。