下面,MSO表示具有顶点集和边集量化的图的单子二阶逻辑。
令为图的次要封闭族。从罗伯逊和西摩的图未成年人理论可以得出,的特征是禁止未成年人的有限列表。换句话说,对于每个图,当且仅当将所有图排除为未成年人时,我们属于。
由于这个事实,我们有一个MSO公式,当且仅当图才是真。例如,平面图的特征在于不存在的图和,因此很容易明确地写出表征平面图的MSO公式。
问题在于,对于许多不错的未成年人闭合图属性,禁止未成年人的列表是未知的。因此,尽管我们知道存在描述图族的MSO公式,但我们可能不知道该公式是什么。
另一方面,可能的情况是,人们可以为给定的属性想出一个明确的公式,而无需使用图次要定理。我的问题与这种可能性有关。
问题1:是否有未成年人的闭合图族,以使禁止未成年人的集合未知,但是一些表征该 MSO公式是已知的?
问题2: 是否已知一些明确的MSO公式可以表征以下某些属性?
- 属1(图形可嵌入圆环中) (请参见下面的EDIT)
- 固定属k (请参见下面的EDIT)
- 某些固定 k外平面
我希望在此问题上有任何参考或想法。请随时考虑其他次要封闭属性,上面给出的列表仅用于说明。
Obs:明确地说,我不一定意味着很小。给出一个明确的参数或算法足以显示如何构造表征给定属性的公式就足够了。同样,在这个问题的背景下,如果有人给出了构造该家庭的显式算法,我认为这是一个禁止的未成年人家庭。
编辑:我找到了Adler,Kreutzer,Grohe的一篇论文,该论文根据k-1属的特征图来构造一个表征属的图的公式。因此,本文回答了问题2的前两个问题。另一方面,它却没有回答问题1,因为确实存在一种算法,它为每个k构造了表征k属图的禁止未成年人家族(请参阅第4.2节)。因此,这个家庭在问题的意义上是“知名的”。