已知超线性电路界线的“最小”复杂度类别是什么?


25

很抱歉,必须在许多标准参考文献中提出这个问题。我很好奇标题中的问题,特别是我在考虑布尔电路,没有深度限制。我在引号中加上“最小”,以允许存在多个不同的类(彼此不包含),这些类已知超线性范围。

Answers:


25

我相信,已知最小的这样的类是小号2 PS2P(蔡,2001),P PPP(Vinodchandran,2005),和中号Ç ö 中号/ 1(MAcoMA)/1(Santhanam,2007)。实际上,对于每个常数k,所有这些确实都不在S I Z E n kSIZE(nk)中。k


1
谢谢大家的回答。我接受Ryan的结果种类最多,但我感谢Robin和Kaveh的详细解释。
马特·哈斯汀

20

我知道的最强结果是,对于所有k来说,S P 2中存在一个问题,要求电路的大小为Ω n kSP2Ω(nk)

小号P 2是包含在一类 Ž P P Ñ P,其本身包含在 Σ P 2Π P 2。(复杂性动物园提供了有关此类的更多信息。)SP2ZPPNPΣP2ΠP2

结果来自Cai的最强形式的Karp-Lipton定理。

从KL定理可以快速证明这一点:首先,如果SAT需要超多项式大小电路,则可以完成,因为我们在S P 2中表现出了需要超多项式大小电路的问题。如果SAT具有多项式大小的电路,则根据Karp-Lipton定理的最强形式,PH崩溃为S P 2。我们知道PH包含这样的问题(根据Kannan的结果),因此S P 2包含这样的问题。SP2SP2SP2


3
一如既往的好和优越的答案。:)
Kaveh

13

对于一般的电路中,我们知道,有在问题Σ p 2Π p 2,要求尺寸的电路Ω ñ ķ,这是由于拉维坎南(1981年),并根据他的结果是P ^ h包含这样的问题。Σp2Πp2Ω(nk)PH

我认为N P的最佳下限仍为5 n左右。NP5n

见阿罗拉和巴拉克的书,页297.理查德·利普顿有一个帖子自己的博客中对这些成果,也看到这一个


1

To refine the S2PS2P answer, for every k1k1 and cc, either
* The 3-SAT search problem does not have ˜O(nk)O~(nk) circuits, or
* Some problem in O2PO2P with time (and witness size) restricted to ˜O(nk2)O~(nk2) does not have i.o.-O(nk(logn)c)O(nk(logn)c) circuits (i.o. means infinitely often).

If in place of 3-SAT search problem, we used the decision problem, O2PO2P time ˜O(nk2+k)O~(nk2+k) suffices, and if we used the decision problem for bit ii in the lexicographically minimal assignment for 3-SAT, ˜O(nmin(k2+k,k3))O~(nmin(k2+k,k3)) suffices.

一个决策问题不可计算与IO- ø Ñ ķ日志Ñ Ç电路是数量最少Ñ(使用其二进制数字查询),其不与电路的真值表Ñ ķ日志Ñ Ç + 1个门。如果NP在P / poly中,则该问题具有不可辩驳的,由以下内容构成的见证: (1)N (2)给定N ' < N的电路表明N '具有足够小的电路。O(nk(logn)c)Nnk(logn)c+1
N
N<NN
(3) (only used for the ˜O(nk3)O~(nk3) bound) a verifier that enables us to run the opponent's circuit for (2) only O(1)O(1) times (getting 1 bit per run).

On a separate note, for every kk, there are decision problems in (MA ∩ coMA)/1 that do not have O(nk)O(nk) circuits. '/1' means that the machine gets one bit of advice that depends only on the input size. Also, the string Merlin sends can be chosen to depend only on the input size (with this restriction, MA is a subset of O2PO2P), and the advice complexity ΣP2ΣP2. The proof (Santhanam 2007) generalizes IP=PSPACE and PSPACE⊂P/poly ⇒ PSPACE=MA by using a certain well-behaved PSPACE-complete problem and padding the inputs to get minimum circuit sizes that are infinitely often between nk+1nk+1 and nk+2nk+2, using advice to detect enough examples of such nn, and for these nn, solving the padded problem by having Merlin produce such a circuit.

By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.