许多定理和“悖论”-康托尔的对角化,阴影的不确定性,柯尔莫哥洛夫复杂性的不确定性,哥德尔不完全性,柴廷不完整性,拉塞尔悖论等-都具有通过对角化的相同证明(请注意,这比他们可以说的更具体)所有这些都可以通过对角化来证明;相反,感觉所有这些定理实际上都使用相同的对角化;有关更多详细信息,请参见例如Yanofsky,或者更简短和不那么形式化地说明 我对这个问题的回答。
Sasho Nikolov在对上述问题的评论中指出,其中大多数是Lawvere不动点定理的特例。如果它们都是特例,那么这将是捕捉上述想法的一个好方法:确实会有一个带有一个证明(洛夫韦尔)的结果,所有上述结果都将作为直接推论。
现在,由于暂停问题及其朋友的哥德尔不完整和不确定性,众所周知,他们遵循Lawvere的不动点定理(例如,参见here,here或Yanofsky)。但是,尽管潜在的证据在某种程度上“是相同的”,但我并没有立即看到如何针对不确定的Kolmogorov复杂性来做到这一点。所以:
柯尔莫哥洛夫复杂性的不可确定性是否是劳维尔不动点定理的快速推论-不需要额外的对角线化?