拉德纳定理指出,如果P≠NP,则存在一个严格包含P且严格包含在NP中的无限复杂性等级体系。该证明使用了NP减少多一的SAT的完整性。层次结构包含通过一种对角线化构造的复杂度类,每个复杂度类都包含某种语言,较低类中的语言不可以多对一地归纳。
这激发了我的问题:
令C为复杂度类别,令D为严格包含C的复杂度类别。如果D包含完成某种归约概念的语言,相对于C,D和C之间是否存在无限级的复杂度等级层次减少?
更具体地说,我想知道是否存在D = P和C = LOGCFL或C = NC的结果,以适合适当的减少量概念。
正如Kaveh在回答中指出的那样,Ladner的论文已经包含了定界C类的定理7。最强烈的说法是:如果NL≠NP,则NL和NP之间的语言顺序是无限的,并且严格增加了硬度。这比通常的版本(定理1)更一般,后者以P≠NP为条件。但是,Ladner的论文仅考虑D = NP。