上下文:逻辑与自动机之间的关系
布奇定理指出,字符串的Monadic二阶逻辑(MSO)捕获了常规语言的类别。证明实际上表明,存在MSO(或EMSO)在字符串是足以捕捉正规语言。这可能是一个有点出人意料,因为在一般的结构,MSO严格大于更有表现力∃ MSO。
我的(原始)问题:常规语言的基本逻辑?
是否有一个逻辑,在一般结构,严格少表现比,但仍然抓住当在字符串视为该类正规语言的?
特别是,我想知道当使用最小不固定点运算符(FO + LFP)进行扩展时,FO通过字符串捕获了哪些常规语言的片段。它看起来像什么,我正在寻找一个自然的候选(如果不是)。
第一个答案
根据@ makoto-kanazawa的回答,FO(LFP)和FO(TC)都捕获了比常规语言更多的内容,其中TC是传递关闭二进制关系的运算符。TC是否可以由另一种运算符或一组运算符替换,使得扩展名能够准确捕获常规语言的类别,而不能捕获其他任何种类的语言,还有待观察。
众所周知,仅一阶逻辑是不够的,因为它捕获了无星星的语言,这是常规语言的适当子类。作为经典示例,奇偶校验语言不能用FO语句表示。
更新的问题
这是我的问题的新措词,至今仍未得到答复。
一阶逻辑的最小扩展是什么,以便FO +此扩展在接管字符串时能准确捕获常规语言的类?
在此,如果扩展在所有捕获常规语言类的扩展中(在接管字符串时)表现力最小(在接管通用结构时),则它是最小的。