Questions tagged «theano»


4
将TensorFlow与Intel GPU结合使用
我是深度学习的新手。 现在有什么办法可以将TensorFlow与Intel GPU一起使用吗?如果是,请指出正确的方向。 如果没有,请让我知道我的英特尔公司Xeon E3-1200 v3 / 4th Gen Core Processor Integrated Graphics Controller可以使用哪个框架(Keras,Theano等)。
20 tensorflow  keras  theano  gpu 

5
扩大seaborn热图
我corr()用原始df 创建了df。该corr()DF出来70×70,这是不可能的可视化热图... sns.heatmap(df)。如果我尝试显示corr = df.corr(),则表格不适合屏幕,并且我可以看到所有相关性。它是打印整个df大小而不管其大小还是控制热图大小的方法吗?
17 visualization  pandas  plotting  machine-learning  neural-network  svm  decision-trees  svm  efficiency  python  linear-regression  machine-learning  nlp  topic-model  lda  named-entity-recognition  naive-bayes-classifier  association-rules  fuzzy-logic  kaggle  deep-learning  tensorflow  inception  classification  feature-selection  feature-engineering  machine-learning  scikit-learn  tensorflow  keras  encoding  nlp  text-mining  nlp  rnn  python  neural-network  feature-extraction  machine-learning  predictive-modeling  python  r  linear-regression  clustering  r  ggplot2  neural-network  neural-network  training  python  neural-network  deep-learning  rnn  predictive-modeling  databases  sql  programming  distribution  dataset  cross-validation  neural-network  deep-learning  rnn  machine-learning  machine-learning  python  deep-learning  data-mining  tensorflow  visualization  tools  sql  embeddings  orange  feature-extraction  unsupervised-learning  gan  machine-learning  python  data-mining  pandas  machine-learning  data-mining  bigdata  apache-spark  apache-hadoop  deep-learning  python  convnet  keras  aggregation  clustering  k-means  r  random-forest  decision-trees  reference-request  visualization  data  pandas  plotting  neural-network  keras  rnn  theano  deep-learning  tensorflow  inception  predictive-modeling  deep-learning  regression  sentiment-analysis  nlp  encoding  deep-learning  python  scikit-learn  lda  convnet  keras  predictive-modeling  regression  overfitting  regression  svm  prediction  machine-learning  similarity  word2vec  information-retrieval  word-embeddings  neural-network  deep-learning  rnn 

1
使Keras在多机多核cpu系统上运行
我正在使用Keras的 LSTM(使用Theano背景)来开发Seq2Seq模型,并且我想并行化这些过程,因为即使很少的MB数据也需要数小时的训练。 显然,GPU在并行化方面要比CPU好得多。目前,我只能使用CPU。我可以访问16个CPU(每个内核2个线程X每个插槽4个内核X 2个插槽) 从Theano 的多核支持文档中,我设法使用了单个套接字的所有四个核。因此,基本上,CPU使用率为400%,使用了4个CPU,其余12个CPU仍未使用。我也如何利用它们。如果可行,也可以使用Tensorflow代替Theano背景。
By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.