如何在XNA中执行xBR或hqx过滤器?


11

我想使用着色器中的hqx过滤器(hq2x,hq3x或hq4x)之一或xBR过滤器按比例缩放游戏。

如何在XNA 4.0和SM3中做到这一点?

旁注:这个问题已经过大量编辑,成为现在的样子。


有趣的问题,也许使用粗糙的FXAA后处理滤波器进行点采样会执行类似的操作...只是一个简单的主意,我尚未对其进行测试。
亚诺什Turánszki

en.wikipedia.org/wiki/Hqx大致解释了它们的工作方式,并提供了一些到实现的链接。
亚当


通过使用该hqxSharp项目,我得到了一个破解版本,但是天哪,这太慢了(警告)。我需要可以保持良好帧率的东西。
测试

1
我还认为CG与DirectX 9兼容,iiNA是XNA的基础。尝试编译链接中的示例之一,就好像它是HLSL文件一样。github.com/libretro/common-shaders/tree/master/hqx
ClassicThunder

Answers:


6

您可以通过使用向量运算来减少指令数量:例如,代替

edr = bool4((w1.x < w2.x) && ir_lv1.x, 
            (w1.y < w2.y) && ir_lv1.y, 
            (w1.z < w2.z) && ir_lv1.z, 
            (w1.w < w2.w) && ir_lv1.w);

你可以写

edr = (w1 < w2) && ir_lv1;

HLSL中的运算符可以应用于向量,甚至可以将逻辑运算符应用于&&两个bool3值。这些操作员将按组件执行操作。

着色器代码

float2 texture_size;
float4x4 matrixTransform;

const static float coef = 2.0;
const static float3 yuv_weighted = float3(14.352, 28.176, 5.472);

sampler decal : register(s0);

float4 df(float4 A, float4 B)
{

    // begin optimization: reduction of 42 instruction slots
    float4 result = float4(A.x - B.x, A.y - B.y, A.z - B.z, A.w - B.w);

    return abs(result);
    // end optimization

    /* old code 

    //return float4(abs(A.x - B.x), abs(A.y - B.y), abs(A.z - B.z), abs(A.w - B.w));
    */
}

float4 weighted_distance(float4 a, float4 b, float4 c, float4 d, float4 e, float4 f, float4 g, float4 h)
{
    return (df(a, b) + df(a, c) + df(d, e) + df(d, f) + 4.0 * df(g, h));
}

float4 main_vertex(inout float2 texCoord : TEXCOORD0, inout float4 position : SV_Position) : TEXCOORD1
{
    float2 ps = float2(1.0 / texture_size.x, 1.0 / texture_size.y);
    float4 t1;

    t1.xy = float2(ps.x, 0); // F
    t1.zw = float2(0, ps.y); // H

    position = mul(position, matrixTransform);

    return t1;
}

/*    FRAGMENT SHADER    */
float4 main_fragment(float4 p : POSITION0, float2 tex0 : TEXCOORD0, float4 tex1 : TEXCOORD1) : COLOR0
{
    bool4 edr, edr_left, edr_up, px; // px = pixel, edr = edge detection rule
    bool4 ir_lv1, ir_lv2_left, ir_lv2_up;
    bool4 nc; // new_color
    bool4 fx, fx_left, fx_up; // inequations of straight lines.

    float2 fp = frac(tex0 * texture_size);
    float2 dx = tex1.xy;
    float2 dy = tex1.zw;

    float3 A = tex2D(decal, tex0 - dx - dy).xyz;
    float3 B = tex2D(decal, tex0 - dy).xyz;
    float3 C = tex2D(decal, tex0 + dx - dy).xyz;
    float3 D = tex2D(decal, tex0 - dx).xyz;
    float3 E = tex2D(decal, tex0).xyz;
    float3 F = tex2D(decal, tex0 + dx).xyz;
    float3 G = tex2D(decal, tex0 - dx + dy).xyz;
    float3 H = tex2D(decal, tex0 + dy).xyz;
    float3 I = tex2D(decal, tex0 + dx + dy).xyz;
    float3 A1 = tex2D(decal, tex0 - dx - 2.0*dy).xyz;
    float3 C1 = tex2D(decal, tex0 + dx - 2.0*dy).xyz;
    float3 A0 = tex2D(decal, tex0 - 2.0*dx - dy).xyz;
    float3 G0 = tex2D(decal, tex0 - 2.0*dx + dy).xyz;
    float3 C4 = tex2D(decal, tex0 + 2.0*dx - dy).xyz;
    float3 I4 = tex2D(decal, tex0 + 2.0*dx + dy).xyz;
    float3 G5 = tex2D(decal, tex0 - dx + 2.0*dy).xyz;
    float3 I5 = tex2D(decal, tex0 + dx + 2.0*dy).xyz;
    float3 B1 = tex2D(decal, tex0 - 2.0*dy).xyz;
    float3 D0 = tex2D(decal, tex0 - 2.0*dx).xyz;
    float3 H5 = tex2D(decal, tex0 + 2.0*dy).xyz;
    float3 F4 = tex2D(decal, tex0 + 2.0*dx).xyz;

    float4 b = mul(float4x3(B, D, H, F), yuv_weighted);
    float4 c = mul(float4x3(C, A, G, I), yuv_weighted);
    float4 e = mul(float4x3(E, E, E, E), yuv_weighted);
    float4 d = b.yzwx;
    float4 f = b.wxyz;
    float4 g = c.zwxy;
    float4 h = b.zwxy;
    float4 i = c.wxyz;

    float4 i4 = mul(float4x3(I4, C1, A0, G5), yuv_weighted);
    float4 i5 = mul(float4x3(I5, C4, A1, G0), yuv_weighted);
    float4 h5 = mul(float4x3(H5, F4, B1, D0), yuv_weighted);
    float4 f4 = h5.yzwx;

    float4 Ao = float4(1.0, -1.0, -1.0, 1.0);
    float4 Bo = float4(1.0, 1.0, -1.0, -1.0);
    float4 Co = float4(1.5, 0.5, -0.5, 0.5);
    float4 Ax = float4(1.0, -1.0, -1.0, 1.0);
    float4 Bx = float4(0.5, 2.0, -0.5, -2.0);
    float4 Cx = float4(1.0, 1.0, -0.5, 0.0);
    float4 Ay = float4(1.0, -1.0, -1.0, 1.0);
    float4 By = float4(2.0, 0.5, -2.0, -0.5);
    float4 Cy = float4(2.0, 0.0, -1.0, 0.5);

    // These inequations define the line below which interpolation occurs.
    fx.x = (Ao.x*fp.y + Bo.x*fp.x > Co.x);
    fx_left.x = (Ax.x*fp.y + Bx.x*fp.x > Cx.x);
    fx_up.x = (Ay.x*fp.y + By.x*fp.x > Cy.x);

    fx.y = (Ao.y*fp.y + Bo.y*fp.x > Co.y);
    fx_left.y = (Ax.y*fp.y + Bx.y*fp.x > Cx.y);
    fx_up.y = (Ay.y*fp.y + By.y*fp.x > Cy.y);

    fx.z = (Ao.z*fp.y + Bo.z*fp.x > Co.z);
    fx_left.z = (Ax.z*fp.y + Bx.z*fp.x > Cx.z);
    fx_up.z = (Ay.z*fp.y + By.z*fp.x > Cy.z);

    fx.w = (Ao.w*fp.y + Bo.w*fp.x > Co.w);
    fx_left.w = (Ax.w*fp.y + Bx.w*fp.x > Cx.w);
    fx_up.w = (Ay.w*fp.y + By.w*fp.x > Cy.w);

    //ir_lv1.x = ((e.x != f.x) && (e.x != h.x));
    //ir_lv1.y = ((e.y != f.y) && (e.y != h.y));
    //ir_lv1.z = ((e.z != f.z) && (e.z != h.z));
    //ir_lv1.w = ((e.w != f.w) && (e.w != h.w));
    ir_lv1 = ((e != f) && (e != h));

    //ir_lv2_left.x = ((e.x != g.x) && (d.x != g.x));
    //ir_lv2_left.y = ((e.y != g.y) && (d.y != g.y));
    //ir_lv2_left.z = ((e.z != g.z) && (d.z != g.z));
    //ir_lv2_left.w = ((e.w != g.w) && (d.w != g.w));
    ir_lv2_left = ((e != g) && (d != g));

    //ir_lv2_up.x = ((e.x != c.x) && (b.x != c.x));
    //ir_lv2_up.y = ((e.y != c.y) && (b.y != c.y));
    //ir_lv2_up.z = ((e.z != c.z) && (b.z != c.z));
    //ir_lv2_up.w = ((e.w != c.w) && (b.w != c.w));
    ir_lv2_up = ((e != c) && (b != c));

    float4 w1 = weighted_distance(e, c, g, i, h5, f4, h, f);
    float4 w2 = weighted_distance(h, d, i5, f, i4, b, e, i);

    // begin optimization: reduction of 6 instruction slots
    float4 df_fg = df(f, g);
    float4 df_hc = df(h, c);
    // end optimization

    float4 t1 = (coef * df_fg);
    float4 t2 = df_hc;
    float4 t3 = df_fg;
    float4 t4 = (coef * df_hc);

    //edr = bool4((w1.x < w2.x) && ir_lv1.x, 
    //            (w1.y < w2.y) && ir_lv1.y, 
    //            (w1.z < w2.z) && ir_lv1.z, 
    //            (w1.w < w2.w) && ir_lv1.w);
    edr = (w1 < w2) && ir_lv1;

    //edr_left = bool4((t1.x <= t2.x) && ir_lv2_left.x, 
    //                 (t1.y <= t2.y) && ir_lv2_left.y, 
    //                 (t1.z <= t2.z) && ir_lv2_left.z, 
    //                 (t1.w <= t2.w) && ir_lv2_left.w);
    edr_left = (t1 <= t2) && ir_lv2_left;

    //edr_up = bool4((t4.x <= t3.x) && ir_lv2_up.x, 
    //               (t4.y <= t3.y) && ir_lv2_up.y, 
    //               (t4.z <= t3.z) && ir_lv2_up.z, 
    //               (t4.w <= t3.w) && ir_lv2_up.w);
    edr_up = (t4 <= t3) && ir_lv2_up;

    //nc.x = (edr.x && (fx.x || edr_left.x && fx_left.x || edr_up.x && fx_up.x));
    //nc.y = (edr.y && (fx.y || edr_left.y && fx_left.y || edr_up.y && fx_up.y));
    //nc.z = (edr.z && (fx.z || edr_left.z && fx_left.z || edr_up.z && fx_up.z));
    //nc.w = (edr.w && (fx.w || edr_left.w && fx_left.w || edr_up.w && fx_up.w));
    nc = (edr && (fx || edr_left && fx_left || edr_up && fx_up));

    // to actually compile this shader, uncomment the following line
    // which reduces the instruction count to under 512
    //nc.zw = (float2)0;

    t1 = df(e, f);
    t2 = df(e, h);

    //px = bool4(t1.x <= t2.x, 
    //           t1.y <= t2.y, 
    //           t1.z <= t2.z, 
    //           t1.w <= t2.w);
    px = t1 <= t2;

    float3 res = nc.x ? px.x ? F : H : nc.y ? px.y ? B : F : nc.z ? px.z ? D : B : nc.w ? px.w ? H : D : E;

    return float4(res.x, res.y, res.z, 1.0);
}

technique mainTech
{
    pass mainPass
    {
        VertexShader = compile vs_3_0 main_vertex();
        PixelShader = compile ps_3_0 main_fragment();
    }
}

图片

Redshrike原始图像放大了4倍。

  • 点采样

之前

  • xBR

后


我已经在答案中使用了这些优化。这就是我能够克服看到的指令插槽错误的方法。
测试

没关系。我有点太慢了:)
zogi 2014年

ir_lv1 = ((e != f) && (e != h)); ir_lv2_left = ((e != g) && (d != g)); ir_lv2_up = ((e != c) && (b != c)); 我错过了您发现的那些优秀的优化,我并没有因为我的问题而最终需要它们,因为我能够通过其他优化来减少指令数量。
测试

好。不错的话题。在您提出问题之前,我还没有听说过这些算法。我发现这个博客帖子大约HQX,这让我有所了解的算法。如果您有兴趣,我强烈建议您。
zogi 2014年

6

我工作了。它不使用hqx过滤器,而是使用xBR过滤器(我更喜欢)。对我来说,这不是问题。如果需要hqx筛选器,则需要将.cg文件转换为相应的XNA。

出于完整性和搜索原因,我将编辑问题以使其更简洁,然后在此处发布所有相关信息以回答问题。


步骤1:游戏程式码设定

首先,您最有可能要设置一个渲染目标,以1:1比例绘制游戏,然后渲染滤镜。

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;

namespace xbr
{
    /// <summary>
    /// This is the main type for your game
    /// </summary>
    public class Game1 : Microsoft.Xna.Framework.Game
    {

        GraphicsDeviceManager graphics;
        SpriteBatch spriteBatch;
        RenderTarget2D renderTarget;
        Effect xbrEffect;
        Matrix projection;
        Matrix halfPixelOffset = Matrix.CreateTranslation(-0.5f, -0.5f, 0);
        Texture2D pretend240x160Scene;

        // the bounds of your 1:1 scene
        Rectangle renderBounds = new Rectangle(0, 0, 240, 160);

        // the bounds of your output scene (same w:h ratio)
        Rectangle outputBounds = new Rectangle(0, 0, 720, 480);

        public Game1()
        {
           base.Content.RootDirectory = "Content";

           this.graphics = new GraphicsDeviceManager(this);
           this.graphics.PreferredBackBufferWidth = outputBounds.Width;
           this.graphics.PreferredBackBufferHeight = outputBounds.Height;
        }

        /// <summary>
        /// Allows the game to perform any initialization it needs to before starting to run.
        /// This is where it can query for any required services and load any non-graphic
        /// related content.  Calling base.Initialize will enumerate through any components
        /// and initialize them as well.
        /// </summary>
        protected override void Initialize()
        {
            // TODO: Add your initialization logic here

            base.Initialize();
        }

        /// <summary>
        /// LoadContent will be called once per game and is the place to load
        /// all of your content.
        /// </summary>
        protected override void LoadContent()
        {
            // Create a new SpriteBatch, which can be used to draw textures.
            this.spriteBatch = new SpriteBatch(base.GraphicsDevice);
            this.xbrEffect = Content.Load<Effect>("xbr");

            // a fake scene that is a 240x160 image
            this.pretend240x160Scene = base.Content.Load<Texture2D>("240x160Scene");
            this.renderTarget = new RenderTarget2D(base.GraphicsDevice, this.renderBounds.Width, this.renderBounds.Height);

            // default vertex matrix for the vertex method
            this.projection = Matrix.CreateOrthographicOffCenter(0, this.outputBounds.Width, this.outputBounds.Height, 0, 0, 1);

            // set the values of this effect, should only have to do this once
            this.xbrEffect.Parameters["matrixTransform"].SetValue(halfPixelOffset * projection);
            this.xbrEffect.Parameters["textureSize"].SetValue(new float[] { renderBounds.Width, renderBounds.Height });
        }

        /// <summary>
        /// UnloadContent will be called once per game and is the place to unload
        /// all content.
        /// </summary>
        protected override void UnloadContent()
        {
        }

        /// <summary>
        /// Allows the game to run logic such as updating the world,
        /// checking for collisions, gathering input, and playing audio.
        /// </summary>
        /// <param name="gameTime">Provides a snapshot of timing values.</param>
        protected override void Update(GameTime gameTime)
        {
            base.Update(gameTime);
        }

        /// <summary>
        /// This is called when the game should draw itself.
        /// </summary>
        /// <param name="gameTime">Provides a snapshot of timing values.</param>
        protected override void Draw(GameTime gameTime)
        {
            base.GraphicsDevice.Clear(Color.CornflowerBlue);
            base.GraphicsDevice.SetRenderTarget(this.renderTarget);

            // draw your scene here scaled 1:1. for now I'll just draw
            // my fake 240x160 texture
            spriteBatch.Begin(SpriteSortMode.Deferred, BlendState.NonPremultiplied, 
                              SamplerState.PointClamp, null, null);

            spriteBatch.Draw(this.pretend240x160Scene, this.renderBounds, this.renderBounds, Color.White);

            spriteBatch.End();

            // now we'll draw to the back buffer
            base.GraphicsDevice.SetRenderTarget(null);

            // this renders the effect
            spriteBatch.Begin(SpriteSortMode.Immediate, BlendState.NonPremultiplied, 
                              SamplerState.PointClamp, null, null, this.xbrEffect);

            spriteBatch.Draw(this.renderTarget, this.outputBounds, this.renderBounds, Color.White);
            spriteBatch.End();

            base.Draw(gameTime);
        }
    }
}

第2步:效果文件

以下是执行xBR过滤器的XNA兼容效果文件。

// all identified optimizations have been amalgamated into this file
float2 textureSize;
float4x4 matrixTransform;

const static float coef = 2.0;
const static float3 yuv_weighted = float3(14.352, 28.176, 5.472);

sampler decal : register(s0);

float4 df(float4 A, float4 B)
{
    return abs(A - B);
}

float4 weighted_distance(float4 a, float4 b, float4 c, float4 d, 
                         float4 e, float4 f, float4 g, float4 h)
{
    return (df(a, b) + df(a, c) + df(d, e) + df(d, f) + 4.0 * df(g, h));
}

float4 main_vertex(inout float4 col0 : COLOR0, inout float2 tex0 : TEXCOORD0, 
                   inout float4 pos0 : POSITION0) : TEXCOORD1
{
    float2 ps = 1.0 / textureSize;

    pos0 = mul(pos0, matrixTransform);

    return float4(ps.x, 0, 0, ps.y);
}

float4 main_fragment(float4 pos0 : POSITION0, float2 tex0 : TEXCOORD0, 
                     float4 tex1 : TEXCOORD1) : COLOR0
{
    bool4 edr, edr_left, edr_up, px; // px = pixel, edr = edge detection rule
    bool4 ir_lv1, ir_lv2_left, ir_lv2_up;
    bool4 nc; // new_color
    bool4 fx, fx_left, fx_up; // inequations of straight lines.

    float2 fp = frac(tex0 * textureSize);
    float2 dx = tex1.xy;
    float2 dy = tex1.zw;

    float3 A  = tex2D(decal, tex0 - dx - dy).xyz;
    float3 B  = tex2D(decal, tex0 - dy).xyz;
    float3 C  = tex2D(decal, tex0 + dx - dy).xyz;
    float3 D  = tex2D(decal, tex0 - dx).xyz;
    float3 E  = tex2D(decal, tex0).xyz;
    float3 F  = tex2D(decal, tex0 + dx).xyz;
    float3 G  = tex2D(decal, tex0 - dx + dy).xyz;
    float3 H  = tex2D(decal, tex0 + dy).xyz;
    float3 I  = tex2D(decal, tex0 + dx + dy).xyz;
    float3 A1 = tex2D(decal, tex0 - dx - 2.0 * dy).xyz;
    float3 C1 = tex2D(decal, tex0 + dx - 2.0 * dy).xyz;
    float3 A0 = tex2D(decal, tex0 - 2.0 * dx - dy).xyz;
    float3 G0 = tex2D(decal, tex0 - 2.0 * dx + dy).xyz;
    float3 C4 = tex2D(decal, tex0 + 2.0 * dx - dy).xyz;
    float3 I4 = tex2D(decal, tex0 + 2.0 * dx + dy).xyz;
    float3 G5 = tex2D(decal, tex0 - dx + 2.0 * dy).xyz;
    float3 I5 = tex2D(decal, tex0 + dx + 2.0 * dy).xyz;
    float3 B1 = tex2D(decal, tex0 - 2.0 * dy).xyz;
    float3 D0 = tex2D(decal, tex0 - 2.0 * dx).xyz;
    float3 H5 = tex2D(decal, tex0 + 2.0 * dy).xyz;
    float3 F4 = tex2D(decal, tex0 + 2.0 * dx).xyz;

    float4 b = mul(float4x3(B, D, H, F), yuv_weighted);
    float4 c = mul(float4x3(C, A, G, I), yuv_weighted);
    float4 e = mul(float4x3(E, E, E, E), yuv_weighted);
    float4 d = b.yzwx;
    float4 f = b.wxyz;
    float4 g = c.zwxy;
    float4 h = b.zwxy;
    float4 i = c.wxyz;

    float4 i4 = mul(float4x3(I4, C1, A0, G5), yuv_weighted);
    float4 i5 = mul(float4x3(I5, C4, A1, G0), yuv_weighted);
    float4 h5 = mul(float4x3(H5, F4, B1, D0), yuv_weighted);
    float4 f4 = h5.yzwx;

    float4 Ao = float4(1.0, -1.0, -1.0, 1.0);
    float4 Bo = float4(1.0, 1.0, -1.0, -1.0);
    float4 Co = float4(1.5, 0.5, -0.5, 0.5);
    float4 Ax = float4(1.0, -1.0, -1.0, 1.0);
    float4 Bx = float4(0.5, 2.0, -0.5, -2.0);
    float4 Cx = float4(1.0, 1.0, -0.5, 0.0);
    float4 Ay = float4(1.0, -1.0, -1.0, 1.0);
    float4 By = float4(2.0, 0.5, -2.0, -0.5);
    float4 Cy = float4(2.0, 0.0, -1.0, 0.5);

    // These inequations define the line below which interpolation occurs.
    fx.x = (Ao.x * fp.y + Bo.x * fp.x > Co.x);
    fx.y = (Ao.y * fp.y + Bo.y * fp.x > Co.y);
    fx.z = (Ao.z * fp.y + Bo.z * fp.x > Co.z);
    fx.w = (Ao.w * fp.y + Bo.w * fp.x > Co.w);

    fx_left.x = (Ax.x * fp.y + Bx.x * fp.x > Cx.x);
    fx_left.y = (Ax.y * fp.y + Bx.y * fp.x > Cx.y);
    fx_left.z = (Ax.z * fp.y + Bx.z * fp.x > Cx.z);
    fx_left.w = (Ax.w * fp.y + Bx.w * fp.x > Cx.w);

    fx_up.x = (Ay.x * fp.y + By.x * fp.x > Cy.x);
    fx_up.y = (Ay.y * fp.y + By.y * fp.x > Cy.y);
    fx_up.z = (Ay.z * fp.y + By.z * fp.x > Cy.z);
    fx_up.w = (Ay.w * fp.y + By.w * fp.x > Cy.w);

    ir_lv1      = ((e != f) && (e != h));
    ir_lv2_left = ((e != g) && (d != g));
    ir_lv2_up   = ((e != c) && (b != c));

    float4 w1 = weighted_distance(e, c, g, i, h5, f4, h, f);
    float4 w2 = weighted_distance(h, d, i5, f, i4, b, e, i);
    float4 df_fg = df(f, g);
    float4 df_hc = df(h, c);
    float4 t1 = (coef * df_fg);
    float4 t2 = df_hc;
    float4 t3 = df_fg;
    float4 t4 = (coef * df_hc);

    edr      = (w1 < w2)  && ir_lv1;
    edr_left = (t1 <= t2) && ir_lv2_left;
    edr_up   = (t4 <= t3) && ir_lv2_up;

    nc = (edr && (fx || edr_left && fx_left || edr_up && fx_up));

    t1 = df(e, f);
    t2 = df(e, h);
    px = t1 <= t2;

    float3 res = nc.x ? px.x ? F : H : 
                 nc.y ? px.y ? B : F : 
                 nc.z ? px.z ? D : B : 
                 nc.w ? px.w ? H : D : E;

    return float4(res.xyz, 1.0);
}

technique T0
{
    pass P0
    {
        VertexShader = compile vs_3_0 main_vertex();
        PixelShader = compile ps_3_0 main_fragment();
    }
}

结果

我用于240x160的纹理渲染:

xBR输入

运行游戏的输出:

xBR输出

资料来源

我转换为XNA兼容的.cg文件来自此处。所以功劳归功于他们编写它。

By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.