如何选择每个组的第一行?


143

我有一个生成的DataFrame,如下所示:

df.groupBy($"Hour", $"Category")
  .agg(sum($"value") as "TotalValue")
  .sort($"Hour".asc, $"TotalValue".desc))

结果如下:

+----+--------+----------+
|Hour|Category|TotalValue|
+----+--------+----------+
|   0|   cat26|      30.9|
|   0|   cat13|      22.1|
|   0|   cat95|      19.6|
|   0|  cat105|       1.3|
|   1|   cat67|      28.5|
|   1|    cat4|      26.8|
|   1|   cat13|      12.6|
|   1|   cat23|       5.3|
|   2|   cat56|      39.6|
|   2|   cat40|      29.7|
|   2|  cat187|      27.9|
|   2|   cat68|       9.8|
|   3|    cat8|      35.6|
| ...|    ....|      ....|
+----+--------+----------+

如您所见,DataFrame 按升序排列Hour,然后按TotalValue降序排列。

我想选择每个组的第一行,即

  • 从小时== 0的组中选择(0,cat26,30.9)
  • 从小时= = 1的组中选择(1,cat67,28.5)
  • 从小时== 2的组中选择(2,cat56,39.6)
  • 等等

因此,所需的输出将是:

+----+--------+----------+
|Hour|Category|TotalValue|
+----+--------+----------+
|   0|   cat26|      30.9|
|   1|   cat67|      28.5|
|   2|   cat56|      39.6|
|   3|    cat8|      35.6|
| ...|     ...|       ...|
+----+--------+----------+

能够选择每个组的前N行也可能很方便。

非常感谢您的帮助。

Answers:


231

窗口功能

这样的事情应该可以解决问题:

import org.apache.spark.sql.functions.{row_number, max, broadcast}
import org.apache.spark.sql.expressions.Window

val df = sc.parallelize(Seq(
  (0,"cat26",30.9), (0,"cat13",22.1), (0,"cat95",19.6), (0,"cat105",1.3),
  (1,"cat67",28.5), (1,"cat4",26.8), (1,"cat13",12.6), (1,"cat23",5.3),
  (2,"cat56",39.6), (2,"cat40",29.7), (2,"cat187",27.9), (2,"cat68",9.8),
  (3,"cat8",35.6))).toDF("Hour", "Category", "TotalValue")

val w = Window.partitionBy($"hour").orderBy($"TotalValue".desc)

val dfTop = df.withColumn("rn", row_number.over(w)).where($"rn" === 1).drop("rn")

dfTop.show
// +----+--------+----------+
// |Hour|Category|TotalValue|
// +----+--------+----------+
// |   0|   cat26|      30.9|
// |   1|   cat67|      28.5|
// |   2|   cat56|      39.6|
// |   3|    cat8|      35.6|
// +----+--------+----------+

在出现大量数据偏斜的情况下,此方法效率不高。

普通SQL聚合后跟join

或者,您可以加入聚合数据框:

val dfMax = df.groupBy($"hour".as("max_hour")).agg(max($"TotalValue").as("max_value"))

val dfTopByJoin = df.join(broadcast(dfMax),
    ($"hour" === $"max_hour") && ($"TotalValue" === $"max_value"))
  .drop("max_hour")
  .drop("max_value")

dfTopByJoin.show

// +----+--------+----------+
// |Hour|Category|TotalValue|
// +----+--------+----------+
// |   0|   cat26|      30.9|
// |   1|   cat67|      28.5|
// |   2|   cat56|      39.6|
// |   3|    cat8|      35.6|
// +----+--------+----------+

它将保留重复的值(如果每小时有多个类别且总值相同)。您可以按照以下步骤删除它们:

dfTopByJoin
  .groupBy($"hour")
  .agg(
    first("category").alias("category"),
    first("TotalValue").alias("TotalValue"))

使用排序structs

整洁,尽管没有经过很好的测试,但是不需要连接或窗口函数:

val dfTop = df.select($"Hour", struct($"TotalValue", $"Category").alias("vs"))
  .groupBy($"hour")
  .agg(max("vs").alias("vs"))
  .select($"Hour", $"vs.Category", $"vs.TotalValue")

dfTop.show
// +----+--------+----------+
// |Hour|Category|TotalValue|
// +----+--------+----------+
// |   0|   cat26|      30.9|
// |   1|   cat67|      28.5|
// |   2|   cat56|      39.6|
// |   3|    cat8|      35.6|
// +----+--------+----------+

使用DataSet API(Spark 1.6 +,2.0 +):

Spark 1.6

case class Record(Hour: Integer, Category: String, TotalValue: Double)

df.as[Record]
  .groupBy($"hour")
  .reduce((x, y) => if (x.TotalValue > y.TotalValue) x else y)
  .show

// +---+--------------+
// | _1|            _2|
// +---+--------------+
// |[0]|[0,cat26,30.9]|
// |[1]|[1,cat67,28.5]|
// |[2]|[2,cat56,39.6]|
// |[3]| [3,cat8,35.6]|
// +---+--------------+

Spark 2.0或更高版本

df.as[Record]
  .groupByKey(_.Hour)
  .reduceGroups((x, y) => if (x.TotalValue > y.TotalValue) x else y)

后两种方法可以利用地图侧合并,并且不需要完全随机播放,因此与窗口函数和联接相比,大多数时间应该表现出更好的性能。这些甘蔗还可以与completed输出模式下的结构化流一起使用。

不要使用

df.orderBy(...).groupBy(...).agg(first(...), ...)

这似乎是工作(尤其是在local模式),但它是不可靠的(见SPARK-16207,学分Tzach琐链接有关JIRA问题,和SPARK-30335)。

相同说明适用于

df.orderBy(...).dropDuplicates(...)

在内部使用等效的执行计划。


3
看起来从spark 1.6开始,它是row_number()而不是rowNumber
AdamSzałucha17年

关于不要使用df.orderBy(...)。gropBy(...)。在什么情况下我们可以依靠orderBy(...)?或者,如果我们不确定orderBy()是否会给出正确的结果,那么我们有什么选择?
伊格纳西奥·阿罗尔

我可能会忽略一些东西,但是通常建议避免使用groupByKey,而应使用reduceByKey。另外,您将节省一行。
托马斯

3
@Thomas在处理RDD时就避免了groupBy / groupByKey,您会注意到Dataset api甚至没有reduceByKey函数。
soote


16

对于使用多列分组的Spark 2.0.2:

import org.apache.spark.sql.functions.row_number
import org.apache.spark.sql.expressions.Window

val w = Window.partitionBy($"col1", $"col2", $"col3").orderBy($"timestamp".desc)

val refined_df = df.withColumn("rn", row_number.over(w)).where($"rn" === 1).drop("rn")

8

这与zero323答案完全相同但以SQL查询方式。

假设已创建数据框并将其注册为

df.createOrReplaceTempView("table")
//+----+--------+----------+
//|Hour|Category|TotalValue|
//+----+--------+----------+
//|0   |cat26   |30.9      |
//|0   |cat13   |22.1      |
//|0   |cat95   |19.6      |
//|0   |cat105  |1.3       |
//|1   |cat67   |28.5      |
//|1   |cat4    |26.8      |
//|1   |cat13   |12.6      |
//|1   |cat23   |5.3       |
//|2   |cat56   |39.6      |
//|2   |cat40   |29.7      |
//|2   |cat187  |27.9      |
//|2   |cat68   |9.8       |
//|3   |cat8    |35.6      |
//+----+--------+----------+

窗口功能:

sqlContext.sql("select Hour, Category, TotalValue from (select *, row_number() OVER (PARTITION BY Hour ORDER BY TotalValue DESC) as rn  FROM table) tmp where rn = 1").show(false)
//+----+--------+----------+
//|Hour|Category|TotalValue|
//+----+--------+----------+
//|1   |cat67   |28.5      |
//|3   |cat8    |35.6      |
//|2   |cat56   |39.6      |
//|0   |cat26   |30.9      |
//+----+--------+----------+

普通SQL聚合,然后加入:

sqlContext.sql("select Hour, first(Category) as Category, first(TotalValue) as TotalValue from " +
  "(select Hour, Category, TotalValue from table tmp1 " +
  "join " +
  "(select Hour as max_hour, max(TotalValue) as max_value from table group by Hour) tmp2 " +
  "on " +
  "tmp1.Hour = tmp2.max_hour and tmp1.TotalValue = tmp2.max_value) tmp3 " +
  "group by tmp3.Hour")
  .show(false)
//+----+--------+----------+
//|Hour|Category|TotalValue|
//+----+--------+----------+
//|1   |cat67   |28.5      |
//|3   |cat8    |35.6      |
//|2   |cat56   |39.6      |
//|0   |cat26   |30.9      |
//+----+--------+----------+

对结构使用排序:

sqlContext.sql("select Hour, vs.Category, vs.TotalValue from (select Hour, max(struct(TotalValue, Category)) as vs from table group by Hour)").show(false)
//+----+--------+----------+
//|Hour|Category|TotalValue|
//+----+--------+----------+
//|1   |cat67   |28.5      |
//|3   |cat8    |35.6      |
//|2   |cat56   |39.6      |
//|0   |cat26   |30.9      |
//+----+--------+----------+

DataSets的方法不做的与原始答案相同


2

该模式是按键分组=>对每个组执行某些操作,例如reduce =>返回数据框

我认为Dataframe抽象在这种情况下有点麻烦,所以我使用了RDD功能

 val rdd: RDD[Row] = originalDf
  .rdd
  .groupBy(row => row.getAs[String]("grouping_row"))
  .map(iterableTuple => {
    iterableTuple._2.reduce(reduceFunction)
  })

val productDf = sqlContext.createDataFrame(rdd, originalDf.schema)

1

下面的解决方案只执行一次groupBy,并在一帧中提取包含maxValue的数据框的行。无需进一步的Join或Windows。

import org.apache.spark.sql.Row
import org.apache.spark.sql.catalyst.encoders.RowEncoder
import org.apache.spark.sql.DataFrame

//df is the dataframe with Day, Category, TotalValue

implicit val dfEnc = RowEncoder(df.schema)

val res: DataFrame = df.groupByKey{(r) => r.getInt(0)}.mapGroups[Row]{(day: Int, rows: Iterator[Row]) => i.maxBy{(r) => r.getDouble(2)}}

但它首先会洗牌。几乎没有改善(取决于数据,它可能不比窗口功能差)。
Alper t。Turker

您有一个小组第一名,这将触发洗牌。这并不比window函数差,因为在window函数中,它将评估数据帧中每一行的窗口。
elghoto

1

使用dataframe api执行此操作的一种好方法是使用argmax逻辑,如下所示

  val df = Seq(
    (0,"cat26",30.9), (0,"cat13",22.1), (0,"cat95",19.6), (0,"cat105",1.3),
    (1,"cat67",28.5), (1,"cat4",26.8), (1,"cat13",12.6), (1,"cat23",5.3),
    (2,"cat56",39.6), (2,"cat40",29.7), (2,"cat187",27.9), (2,"cat68",9.8),
    (3,"cat8",35.6)).toDF("Hour", "Category", "TotalValue")

  df.groupBy($"Hour")
    .agg(max(struct($"TotalValue", $"Category")).as("argmax"))
    .select($"Hour", $"argmax.*").show

 +----+----------+--------+
 |Hour|TotalValue|Category|
 +----+----------+--------+
 |   1|      28.5|   cat67|
 |   3|      35.6|    cat8|
 |   2|      39.6|   cat56|
 |   0|      30.9|   cat26|
 +----+----------+--------+

0

在这里您可以这样做-

   val data = df.groupBy("Hour").agg(first("Hour").as("_1"),first("Category").as("Category"),first("TotalValue").as("TotalValue")).drop("Hour")

data.withColumnRenamed("_1","Hour").show

-2

我们可以使用rank()窗口函数(您可以在其中选择等级= 1),等级只是为组的每一行添加一个数字(在这种情况下,将是小时)

这是一个例子。(来自https://github.com/jaceklaskowski/mastering-apache-spark-book/blob/master/spark-sql-functions.adoc#rank

val dataset = spark.range(9).withColumn("bucket", 'id % 3)

import org.apache.spark.sql.expressions.Window
val byBucket = Window.partitionBy('bucket).orderBy('id)

scala> dataset.withColumn("rank", rank over byBucket).show
+---+------+----+
| id|bucket|rank|
+---+------+----+
|  0|     0|   1|
|  3|     0|   2|
|  6|     0|   3|
|  1|     1|   1|
|  4|     1|   2|
|  7|     1|   3|
|  2|     2|   1|
|  5|     2|   2|
|  8|     2|   3|
+---+------+----+
By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.