OpenCV-Python中的简单数字识别OCR
我正在尝试在OpenCV-Python(cv2)中实现“数字识别OCR”。它仅用于学习目的。我想学习OpenCV中的KNearest和SVM功能。 我每个数字有100个样本(即图像)。我想和他们一起训练。 letter_recog.pyOpenCV示例附带一个示例。但是我仍然不知道如何使用它。我不了解样本,响应等内容。此外,它首先会加载txt文件,而我首先并不了解。 稍后进行搜索时,我可以在cpp样本中找到letter_recognitiontion.data。我用它并在letter_recog.py模型中为cv2.KNearest编写了一个代码(仅用于测试): import numpy as np import cv2 fn = 'letter-recognition.data' a = np.loadtxt(fn, np.float32, delimiter=',', converters={ 0 : lambda ch : ord(ch)-ord('A') }) samples, responses = a[:,1:], a[:,0] model = cv2.KNearest() retval = model.train(samples,responses) retval, results, neigh_resp, dists = model.find_nearest(samples, k = 10) print results.ravel() 它给了我一个大小为20000的数组,我不知道它是什么。 问题: …