8
使用Scipy(Python)使经验分布适合理论分布吗?
简介:我列出了30,000多个整数值,范围从0到47(含0和47),例如[0,0,0,0,..,1,1,1,1,...,2,2,2,2,...,47,47,47,...]从某个连续分布中采样。列表中的值不一定按顺序排列,但顺序对于此问题并不重要。 问题:根据我的分布,我想为任何给定值计算p值(看到更大值的概率)。例如,您可以看到0的p值将接近1,数字较大的p值将趋于0。 我不知道我是否正确,但是为了确定概率,我认为我需要使我的数据适合最适合描述我的数据的理论分布。我认为需要某种拟合优度检验来确定最佳模型。 有没有办法在Python(Scipy或Numpy)中实现这种分析?你能举个例子吗? 谢谢!