Questions tagged «randomised-benchmarking»

1
在随机基准测试中使用保真度的目的
通常,在比较两个密度矩阵和(例如,当是理想的实验实现)时,这两个状态的接近度由量子态保真度并将不忠度定义为。σ ρ σρρ\rhoσσ\sigmaρρ\rhoσσ\sigma 1−FF=tr(ρ−−√σρ−−√−−−−−−√),F=tr(ρσρ),F = tr\left(\sqrt{\sqrt{\rho}\sigma\sqrt{\rho}}\right),1−F1−F1-F 同样,当比较门的实现与理想版本的接近程度时,保真度变为F(U,U~)=∫[tr(U|ψ⟩⟨ψ|U†−−−−−−−−−√U~|ψ⟩⟨ψ|U~†U|ψ⟩⟨ψ|U†−−−−−−−−−√−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−√)]2dψ,F(U,U~)=∫[tr(U|ψ⟩⟨ψ|U†U~|ψ⟩⟨ψ|U~†U|ψ⟩⟨ψ|U†)]2dψ,F\left( U, \tilde U\right) = \int\left[tr\left(\sqrt{\sqrt{U\left|\psi\rangle\langle\psi\right|U^\dagger}\tilde U\left|\psi\rangle\langle\psi\right|\tilde U^\dagger\sqrt{U\left|\psi\rangle\langle\psi\right|U^\dagger}}\right)\right]^2\,d\psi,其中dψdψd\psi是纯状态的Haar测度。毫不奇怪,这会变得相对不愉快。 现在,在密度矩阵的情况下,让我们定义一个矩阵,或者在处理门时定义。然后,使用Schatten规范1,例如,\ | M \ | _2 ^ 2 = tr \ left(M ^ \ dagger M \ right),也可以计算其他准则,例如菱形准则。中号= Ü - 〜ùM=ρ−σM=ρ−σM = \rho - \sigmaM=U−U~M=U−U~M = U - \tilde U‖中号‖ 2 2 =吨- [R (中号†中号)∥M∥1=tr(M†M−−−−−√)‖M‖1=tr(M†M)\| M\|_1 …

1
什么是量子t设计(直觉的理解)?
我开始阅读有关随机基准测试(本文,arxiv版本)的内容,并遇到了“单一2设计”。 经过一番搜查,我发现Clifford组是单一2设计,是“ Quantum t-design”的一个特例。 我阅读了维基百科页面和其他一些参考资料(例如,该 参考资料是指向网站的非pdf链接,该链接指向pdf的网站)。 我想对不同的t设计之间的区别以及悬崖2组设计的构成有一些直观的了解。 如果这个问题太基本了,我事先表示歉意。
By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.