我将在两周前在这里提出的问题重新发布“答案”:为什么Jeffreys事前有用?不过,这确实是一个问题(我当时也无权发表评论),所以我希望可以这样做:
在上面的链接中,讨论了Jeffreys Prior的有趣特征是,在重新参数化模型时,所得后验分布给出了服从变换施加的约束的后验概率。比方说,如那里所讨论的,从所述成功概率移动时在Beta-伯努利例如赔率,它应该是的情况下,该后验满足。
我想创建一个将转换为奇数的Jeffreys先验不变性的数值示例,更有趣的是,缺少其他先验(例如Haldane,均等或任意先验)。
现在,如果成功概率的后验是Beta(对于任何Beta先验,不仅是Jeffreys),则赔率的后验遵循具有相同参数的第二种Beta分布(请参阅Wikipedia)。然后,正如下面的数字示例中突出显示的那样(至少对我来说),对于Beta优先级的任何选择(与alpha0_U
和一起玩)都是不变的beta0_U
,这不仅是Jeffreys,参见。程序的输出。
library(GB2)
# has the Beta density of the 2nd kind, the distribution of theta/(1-theta) if theta~Beta(alpha,beta)
theta_1 = 2/3 # a numerical example as in the above post
theta_2 = 1/3
odds_1 = theta_1/(1-theta_1) # the corresponding odds
odds_2 = theta_2/(1-theta_2)
n = 10 # some data
k = 4
alpha0_J = 1/2 # Jeffreys prior for the Beta-Bernoulli case
beta0_J = 1/2
alpha1_J = alpha0_J + k # the corresponding parameters of the posterior
beta1_J = beta0_J + n - k
alpha0_U = 0 # some other prior
beta0_U = 0
alpha1_U = alpha0_U + k # resulting posterior parameters for the other prior
beta1_U = beta0_U + n - k
# posterior probability that theta is between theta_1 and theta_2:
pbeta(theta_1,alpha1_J,beta1_J) - pbeta(theta_2,alpha1_J,beta1_J)
# the same for the corresponding odds, based on the beta distribution of the second kind
pgb2(odds_1, 1, 1,alpha1_J,beta1_J) - pgb2(odds_2, 1, 1,alpha1_J,beta1_J)
# same for the other prior and resulting posterior
pbeta(theta_1,alpha1_U,beta1_U) - pbeta(theta_2,alpha1_U,beta1_U)
pgb2(odds_1, 1, 1,alpha1_U,beta1_U) - pgb2(odds_2, 1, 1,alpha1_U,beta1_U)
这给我带来了以下问题:
- 我会弄错吗?
- 如果否,那么是否有共轭族不缺少不变性之类的结果?(快速检查使我怀疑,例如在正常-正常情况下,我是否也不会缺乏不变性。)
- 您是否知道一个(最好是简单的)例子,其中我们确实缺乏不变性?