如何使用R中的ROC曲线确定最佳截止点及其置信区间?
我有一项测试数据,可用于区分正常细胞和肿瘤细胞。根据ROC曲线,此目的看起来不错(曲线下的面积为0.9): 我的问题是: 如何确定该测试的临界点及其置信区间,在该区间应该将读数判断为不明确? 可视化此最佳方法(使用ggplot2)是什么? 图是使用ROCR和ggplot2包呈现的: #install.packages("ggplot2","ROCR","verification") #if not installed yet library("ggplot2") library("ROCR") library("verification") d <-read.csv2("data.csv", sep=";") pred <- with(d,prediction(x,test)) perf <- performance(pred,"tpr", "fpr") auc <-performance(pred, measure = "auc")@y.values[[1]] rd <- data.frame(x=perf@x.values[[1]],y=perf@y.values[[1]]) p <- ggplot(rd,aes(x=x,y=y)) + geom_path(size=1) p <- p + geom_segment(aes(x=0,y=0,xend=1,yend=1),colour="black",linetype= 2) p <- p + geom_text(aes(x=1, y= 0, hjust=1, …