Questions tagged «cronbachs-alpha»

2
评估问卷的可靠性:维度,有问题的项目以及是否使用alpha,lambda6或其他某种指数?
我正在分析参加实验的参与者给出的分数。我想估计问卷的可靠性,该问卷由6个项目组成,旨在估计参与者对产品的态度。 我计算了克朗巴赫(Cronbach)的alpha值,将所有项目视为一个比例(alpha约为0.6),并一次删除了一项(最大alpha约为0.72)。我知道,根据项目的数量和底层构造的维数,alpha可能会被低估和高估。因此,我还执行了PCA。该分析表明,有三个主要成分解释了大约80%的方差。所以,我所有的问题都是关于我现在该如何进行? 我是否需要在每个维度上执行alpha计算? 我是否已移除影响可靠性的物品? 此外,在网上搜索时,我发现还有另一种可靠性度量:guttman的lambda6。 此度量与alpha的主要区别是什么? lambda的高价值是什么?


1
如何在ARIMA模型的观察值48中加入创新的离群值?
我正在处理数据集。使用一些模型识别技术后,我得出了一个ARIMA(0,2,1)模型。 我使用R detectIO包TSA中的函数在对原始数据集进行第48次观察时检测到创新的离群值(IO)。 如何将这个离群值合并到模型中,以便将其用于预测?我不想使用ARIMAX模型,因为我可能无法根据R中的模型做出任何预测。还有其他方法可以做到吗? 以下是我的价值观: VALUE <- scan() 4.6 4.5 4.4 4.5 4.4 4.6 4.7 4.6 4.7 4.7 4.7 5.0 5.0 4.9 5.1 5.0 5.4 5.6 5.8 6.1 6.1 6.5 6.8 7.3 7.8 8.3 8.7 9.0 9.4 9.5 9.5 9.6 9.8 10.0 9.9 9.9 9.8 9.8 9.9 9.9 9.6 9.4 …
10 r  time-series  arima  outliers  hypergeometric  fishers-exact  r  time-series  intraclass-correlation  r  logistic  glmm  clogit  mixed-model  spss  repeated-measures  ancova  machine-learning  python  scikit-learn  distributions  data-transformation  stochastic-processes  web  standard-deviation  r  machine-learning  spatial  similarities  spatio-temporal  binomial  sparse  poisson-process  r  regression  nonparametric  r  regression  logistic  simulation  power-analysis  r  svm  random-forest  anova  repeated-measures  manova  regression  statistical-significance  cross-validation  group-differences  model-comparison  r  spatial  model-evaluation  parallel-computing  generalized-least-squares  r  stata  fitting  mixture  hypothesis-testing  categorical-data  hypothesis-testing  anova  statistical-significance  repeated-measures  likert  wilcoxon-mann-whitney  boxplot  statistical-significance  confidence-interval  forecasting  prediction-interval  regression  categorical-data  stata  least-squares  experiment-design  skewness  reliability  cronbachs-alpha  r  regression  splines  maximum-likelihood  modeling  likelihood-ratio  profile-likelihood  nested-models 

1
标尺可靠性度量(Cronbach's alpha等)与组件/因子负载之间有什么关系?
假设我有一个数据集,其中包含一堆问卷项目的得分,理论上,这些项目的评分范围较小,例如心理学研究中。 我知道这里的常见方法是使用Cronbach's alpha或类似方法检查量表的可靠性,然后将量表中的项目汇总以形成量表分数并从那里继续进行分析。 但是,还有因素分析,可以将您所有项目的得分作为输入,并告诉您其中哪些构成一致的因素。通过查看负载和社区等,您可以了解这些因素的强大程度。对我来说,这听起来像是同一件事,只是更深入。 即使您所有的秤可靠性都不错,EFA也会根据哪些项目更适合哪个秤来纠正您,对吗?您可能会遇到交叉负荷,使用派生因子得分比简单的比例总和更有意义。 如果我想将这些量表用于以后的分析(如回归或ANOVA),只要能保持其可靠性,我是否应该汇总这些量表?或者是CFA之类的东西(测试量表是否保持良好的因素,这似乎在衡量与“可靠性”相同的东西)。 我已经分别学习了这两种方法,所以我真的不知道它们之间的关系,是否可以一起使用它们,或者哪种方法对哪种环境更有意义。在这种情况下,是否存在用于良好研究实践的决策树?就像是: 根据预测的规模项目运行CFA 如果CFA拟合良好,请计算因子得分并将其用于分析。 如果CFA显示不合适,请改用EFA并采用探索性方法(或其他方法)。 因子分析和可靠性测试是否确实是针对同一事物的单独方法,还是我在某个地方误解了?
By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.