2
混合模型的参数,半参数和非参数引导
接下来的嫁接摘自本文。我是新手,要引导并尝试为带有R boot包的线性混合模型实现参数,半参数和非参数自举。 R代码 这是我的R代码: library(SASmixed) library(lme4) library(boot) fm1Cult <- lmer(drywt ~ Inoc + Cult + (1|Block) + (1|Cult), data=Cultivation) fixef(fm1Cult) boot.fn <- function(data, indices){ data <- data[indices, ] mod <- lmer(drywt ~ Inoc + Cult + (1|Block) + (1|Cult), data=data) fixef(mod) } set.seed(12345) Out <- boot(data=Cultivation, statistic=boot.fn, R=99) Out 问题 …
9
r
mixed-model
bootstrap
central-limit-theorem
stable-distribution
time-series
hypothesis-testing
markov-process
r
correlation
categorical-data
association-measure
meta-analysis
r
anova
confidence-interval
lm
r
bayesian
multilevel-analysis
logit
regression
logistic
least-squares
eda
regression
notation
distributions
random-variable
expected-value
distributions
markov-process
hidden-markov-model
r
variance
group-differences
microarray
r
descriptive-statistics
machine-learning
references
r
regression
r
categorical-data
random-forest
data-transformation
data-visualization
interactive-visualization
binomial
beta-distribution
time-series
forecasting
logistic
arima
beta-regression
r
time-series
seasonality
large-data
unevenly-spaced-time-series
correlation
statistical-significance
normalization
population
group-differences
demography