1
自由度可以是非整数吗?
当我使用GAM时,它给了我剩余的DF为(代码的最后一行)。这意味着什么?超越GAM示例,通常,自由度可以是非整数吗?26.626.626.6 > library(gam) > summary(gam(mpg~lo(wt),data=mtcars)) Call: gam(formula = mpg ~ lo(wt), data = mtcars) Deviance Residuals: Min 1Q Median 3Q Max -4.1470 -1.6217 -0.8971 1.2445 6.0516 (Dispersion Parameter for gaussian family taken to be 6.6717) Null Deviance: 1126.047 on 31 degrees of freedom Residual Deviance: 177.4662 on 26.6 degrees of …
27
r
degrees-of-freedom
gam
machine-learning
pca
lasso
probability
self-study
bootstrap
expected-value
regression
machine-learning
linear-model
probability
simulation
random-generation
machine-learning
distributions
svm
libsvm
classification
pca
multivariate-analysis
feature-selection
archaeology
r
regression
dataset
simulation
r
regression
time-series
forecasting
predictive-models
r
mean
sem
lavaan
machine-learning
regularization
regression
conv-neural-network
convolution
classification
deep-learning
conv-neural-network
regression
categorical-data
econometrics
r
confirmatory-factor
scale-invariance
self-study
unbiased-estimator
mse
regression
residuals
sampling
random-variable
sample
probability
random-variable
convergence
r
survival
weibull
references
autocorrelation
hypothesis-testing
distributions
correlation
regression
statistical-significance
regression-coefficients
univariate
categorical-data
chi-squared
regression
machine-learning
multiple-regression
categorical-data
linear-model
pca
factor-analysis
factor-rotation
classification
scikit-learn
logistic
p-value
regression
panel-data
multilevel-analysis
variance
bootstrap
bias
probability
r
distributions
interquartile
time-series
hypothesis-testing
normal-distribution
normality-assumption
kurtosis
arima
panel-data
stata
clustered-standard-errors
machine-learning
optimization
lasso
multivariate-analysis
ancova
machine-learning
cross-validation