推导概率密度函数变量的变化?
在书本模式识别和机器学习(公式1.27)中, pÿ(y)= pX(x )∣∣∣dXdÿ∣∣∣= pX(克(y))| G′(y)|pÿ(ÿ)=pX(X)|dXdÿ|=pX(G(ÿ))|G′(ÿ)|p_y(y)=p_x(x) \left | \frac{d x}{d y} \right |=p_x(g(y)) | g'(y) | 其中x=g(y)x=g(y)x=g(y),px(x)px(x)p_x(x),是pdf对应于py(y)py(y)p_y(y)相对于所述变量的变化。 这些书说,这是因为在观察范围内的下降(x,x+δx)(x,x+δx)(x, x + \delta x)会,为小值δxδx\delta x,转化为范围(y,y+δy)(y,y+δy)(y, y + \delta y)。 这是如何正式得出的? 来自Dilip Sarwate的更新 仅当GGg是严格单调递增或递减函数时,结果才成立。 一些小修改以LV Rao的答案 因此,如果gP(是≤ ÿ)= P(克(X)≤ ÿ)= { P(X≤ 克− 1(y)),P(X≥ 克− 1(y)),如果g 单调增加如果g 单调递减P(ÿ≤ÿ)=P(G(X)≤ÿ)={P(X≤G-1(ÿ)),如果 G 单调增加P(X≥G-1(ÿ)),如果 G 单调递减 \begin{equation} …