2
R中的多元多元回归
我有2个因变量(DV),每个因变量的得分可能受7个独立变量(IV)的影响。DV是连续的,而IV则由连续变量和二进制编码变量组成。(在下面的代码中,连续变量用大写字母写,二进制变量用小写字母写。) 该研究的目的是揭示IV变量如何影响这些DV。我提出了以下多元多元回归(MMR)模型: my.model <- lm(cbind(A, B) ~ c + d + e + f + g + H + I) 为了解释结果,我调用两个语句: summary(manova(my.model)) Manova(my.model) 这两个调用的输出都粘贴在下面,并且有很大的不同。有人可以解释一下应该适当选择总结MMR结果的两种说法中的哪一种吗?为什么?任何建议将不胜感激。 使用using的输出summary(manova(my.model)): > summary(manova(my.model)) Df Pillai approx F num Df den Df Pr(>F) c 1 0.105295 5.8255 2 99 0.004057 ** d 1 0.085131 4.6061 2 99 …