3
每日时间序列分析
我正在尝试进行时间序列分析,并且是该领域的新手。我每天都在统计2006-2009年的某个事件,因此我想为其拟合时间序列模型。这是我取得的进步: timeSeriesObj = ts(x,start=c(2006,1,1),frequency=365.25) plot.ts(timeSeriesObj) 我得到的结果图是: 为了验证是否存在季节性和趋势数据,或者不是,我按照此提到的步骤后: ets(x) fit <- tbats(x) seasonal <- !is.null(fit$seasonal) seasonal 在Rob J Hyndman的博客中: library(fma) fit1 <- ets(x) fit2 <- ets(x,model="ANN") deviance <- 2*c(logLik(fit1) - logLik(fit2)) df <- attributes(logLik(fit1))$df - attributes(logLik(fit2))$df #P value 1-pchisq(deviance,df) 两种情况都表明没有季节性。 当我绘制该系列的ACF和PACF时,得到的是: 我的问题是: 这是处理每日时间序列数据的方式吗?该页面建议我应该同时查看每周和年度模式,但是这种方法对我来说并不明确。 一旦有了ACF和PACF图,我将不知道如何进行。 我可以简单地使用auto.arima函数吗? 适合<-arima(myts,order = c(p,d,q) *****更新了Auto.Arima结果****** 当我根据罗布海德门的评论的数据的频率改变为7 这里,auto.arima选择一个季节性ARIMA模型和输出: …