编写一个程序,确定给定的有限岩浆的乘法表是否代表一个组。岩浆是具有关闭的二进制运算的集合,这意味着
- 对于G中的所有a,b,a * b再次在G中(闭合)
令(G,*)为岩浆。如果(G,*)是一个组
- 对于G中的所有a,b,c,(a * b)* c = a *(b * c)(关联性)
- G中存在元素e,使得G中所有a的e * a = a * e = a(中性元素的存在)
- 对于G中所有a,G中都有ab使得a * b = b * a = e其中e是中性元素(存在逆)
眼镜
输入的字符串为n ^ 2-1个字符(岩浆中每个元素一个字符,允许为0-9,az),并且仅代表逐行读取的表,省略了操作员名称。您可以假定输入代表一个有效的岩浆(这意味着每个元素在标题行/列中仅出现一次)。
示例:这里有Z_4的表
+ | 0 1 2 3
-----------
0 | 0 1 2 3
1 | 1 2 3 0
2 | 2 3 0 1
3 | 3 0 1 2
输入字符串为012300123112302230133012
。(或者,如果我们使用符号,也可以是nezdnnezdeezdnzzdneddnez
)。请注意,行和列中元素的顺序不必相同,因此Z_4的表也可能如下所示:
+ | 1 3 2 0
-----------
1 | 2 0 3 1
0 | 1 3 2 0
2 | 3 1 0 2
3 | 0 2 1 3
这也意味着中性元素不一定位于第一列或第一行中。
如果是一组,则程序必须返回代表中性元素的字符。如果不是,则必须返回一个伪造的值(与0-9 az值不同)
测试用例
仅通过更改字符串的一位数字或通过人为地更改定义与组公理之一相反的运算的表,就可以轻松地构造非组。
团体
不重要的
* | x
-----
x | x
xxx
Neutral Element: x
H(四元组)
* | p t d k g b n m
-------------------
m | b d t g k p m n
p | m k g d t n p b
n | p t d k g b n m
b | n g k t d m b p
t | g m n p b k t d
d | k n m b p g d t
k | t b p m n d k g
g | d p b n m t g k
ptdkgbnmmbdtgkpmnpmkgdtnpbnptdkgbnmbngktdmbptgmnpbktddknmbpgdtktbpmndkggdpbnmtgk
Neutral Element: n
D_4
* | y r s t u v w x
-------------------
u | u x w v y t s r
v | v u x w r y t s
w | w v u x s r y t
x | x w v u t s r y
y | y r s t u v w x
r | r s t y v w x u
s | s t y r w x u v
t | t y r s x u v w
yrstuvwxuuxwvytsrvvuxwrytswwvuxsrytxxwvutsryyyrstuvwxrrstyvwxusstyrwxuvttyrsxuvw
Neutral Element: y
Z_6 x Z_2
x | 0 1 2 3 5 7 8 9 a b 4 6
---------------------------
0 | 0 1 2 3 5 7 8 9 a b 4 6
1 | 1 2 3 4 0 8 9 a b 6 5 7
2 | 2 3 4 5 1 9 a b 6 7 0 8
7 | 7 8 9 a 6 2 3 4 5 0 b 1
8 | 8 9 a b 7 3 4 5 0 1 6 2
9 | 9 a b 6 8 4 5 0 1 2 7 3
a | a b 6 7 9 5 0 1 2 3 8 4
b | b 6 7 8 a 0 1 2 3 4 9 5
3 | 3 4 5 0 2 a b 6 7 8 1 9
4 | 4 5 0 1 3 b 6 7 8 9 2 a
5 | 5 0 1 2 4 6 7 8 9 a 3 b
6 | 6 7 8 9 b 1 2 3 4 5 a 0
01235789ab46001235789ab4611234089ab6572234519ab67087789a623450b1889ab7345016299ab684501273aab6795012384bb678a0123495334502ab67819445013b67892a5501246789a3b66789b12345a0
Neutral Element: 0
A_4
* | i a b c d e f g h j k l
---------------------------
i | i a b c d e f g h j k l
a | a b i e c d g h f l j k
b | b i a d e c h f g k l j
c | c f j i g k a d l b e h
d | d h k b f l i e j a c g
e | e g l a h j b c k i d f
f | f j c k i g d l a h b e
g | g l e j a h c k b f i d
h | h k d l b f e j i g a c
j | j c f g k i l a d e h b
k | k d h f l b j i e c g a
l | l e g h j a k b c d f i
iabcdefghjkliiabcdefghjklaabiecdghfljkbbiadechfgkljccfjigkadlbehddhkbfliejacgeeglahjbckidfffjckigdlahbegglejahckbfidhhkdlbfejigacjjcfgkiladehbkkdhflbjiecgalleghjakbcdfi
Neutral Element: i
非团体
循环(缺少关联性的组,或具有中性元素的拟组)
* | 1 2 3 4 5
-------------
1 | 1 2 3 4 5
2 | 2 4 1 5 3
3 | 3 5 4 2 1
4 | 4 1 5 3 2
5 | 5 3 2 1 4
12345112345224153335421441532553214
Neutral Element: 1
(2*2)*3 = 4*3 = 5 != 2 = 2*1 = 2*(2*3)
IP回路(来自http://www.quasigroups.eu/contents/download/2008/16_2.pdf)
* | 1 2 3 4 5 6 7
-----------------
1 | 1 2 3 4 5 6 7
2 | 2 3 1 6 7 5 4
3 | 3 1 2 7 6 4 5
4 | 4 7 6 5 1 2 3
5 | 5 6 7 1 4 3 2
6 | 6 4 5 3 2 7 1
7 | 7 5 4 2 3 1 6
123456711234567223167543312764544765123556714326645327177542316
Neutral Element: 1
2*(2*4) = 2*6 = 5 != 7 = 3*4 = (2*2)*4
Monoid(由Quincunx提供,谢谢!)
类人动物是具有关联性和中性元素的岩浆。
* | 0 1 2 3
-----------
0 | 0 1 2 3
1 | 1 3 1 3
2 | 2 1 0 3
3 | 3 3 3 3
012300123113132210333333
Neutral Element: 0
另一个半身像
(乘法模数10,不带5)我们显然没有逆,而相乘性由乘法模数10给出。
* | 1 2 3 4 6 7 8 9
-------------------
1 | 1 2 3 4 6 7 8 9
2 | 2 4 6 8 2 4 6 8
3 | 3 6 9 2 8 1 4 7
4 | 4 8 2 6 4 8 2 6
6 | 6 2 8 4 6 2 8 4
7 | 7 4 1 8 2 9 6 3
8 | 8 6 4 2 8 6 4 2
9 | 9 8 7 6 4 3 2 1
Neutral Element: 1 12346789112346789224682468336928147448264826662846284774182963886428642998764321
0-9a-z
规则的非常大的游戏:ideone.com/vC0ewt
10101010
顺序相同,中性线在最后一行和列