就像这个问题一样,我对热带(max ,+ )和(min ,+ )电路的B P PBPP与PP / p o l ypoly 问题感兴趣。这个问题简化为显示热带半环上多项式的VC维的上限(请参见下面的定理2)。
(max,+)(min,+)
令R为半环。甲零图案的序列的(˚F 1,... ,˚F 米)的米多项式- [R [ X 1,... ,X Ñ ]是子集小号⊆ { 1 ,... ,米}为其中存在X ∈ [R Ñ和ÿ ∈ [R使得对于所有我= 1 ,...R(f1,…,fm)mR[x1,…,xn]S⊆{1,…,m}x∈Rny∈R,米, ˚F 我(X )= ÿ当且仅当我∈ 小号。也就是说,究竟那些多项式的曲线图 ˚F 我与我∈ 小号必须击中点(X ,ÿ )∈ [R Ñ + 1。(“零模式”,因为条件 ˚F 我(X )= ÿ可以通过替换 ˚F 我(X )- ý = 0。)让i=1,…,mfi(x)=yi∈Sfii∈S(x,y)∈Rn+1fi(x)=yfi(x)−y=0Z (m ) = m个度为 d的多项式序列的最大零模式数。因此, 0 ≤ Ž (米)≤ 2 米。所述 Vapnik等-Chervonenkis维度的 d多项式是
V Ç (Ñ ,d ):= 最大{ 米:Ž (米)= 2 米 }。
Z(m)md0≤Z(m)≤2mdVC(n,d):=max{m:Z(m)=2m}
注意:通常,VC维是针对集合F的族F定义为最大基数| S | 一组š使得{ ˚F ∩ 小号:˚F ∈ ˚F } = 2 小号。装配到该帧中,我们可以与每对相关联(X ,ÿ )∈ [R Ñ + 1设定˚F X ,ÿ的所有多项式˚F度≤ d为其˚F (F|S|S{F∩S:F∈F}=2S(x,y)∈Rn+1Fx,yf≤dx )= y成立。那么所有这样的集合 F x ,y的族 F的VC维度恰好是 V C (n ,d )。
f(x)=yFFx,yVC(n,d)
甲琐碎上界米= V Ç (Ñ ,d )是米≤ Ñ 日志| R | (我们需要至少2 个不同矢量X ∈ [R Ñ具有所有2 米可能的模式),但它在无限半环是无用的。为了在VC维度上具有良好的上限,我们需要在Z (m )上具有良好的上限。在field上,这样的界限是已知的。m=VC(n,d)m≤nlog|R|2mx∈Rn2mZ(m)
定理1: 在任何场 R上,我们有Z (m )≤ ( m d + nRn)。
Z(m)≤(md+nn)
Milnor,
Heintz和
Warren
早些时候证明了类似的上限
; 他们的证明使用了真实代数几何中的沉重技巧。相反,
Ronyai,Babai和Ganapathy(我们在下面给出)的定理1的半页证明是线性代数的简单应用。
通过寻找小米的满足(米d + Ñmn) <2m,我们得到 VC(n,d)=O(nlogd)在任何领域都成立。考虑到BPP与P/POLy的关系,此处重要的是维数仅为d度的对数。这很重要,因为多项式大小的电路可以计算指数级的多项式,并且因为Haussler在PAC学习中的结果(第114页的推论2)(md+nn)<2mVC(n,d)=O(nlogd)BPPPpolyd本文)得出以下结果(我们假设确定性电路被允许使用多数表决来输出其值)。
定理2: 乙P P ⊆ P / p ö 升ý适用于在任意半环电路- [R ,其中V Ç (Ñ ,d ) 仅在多项式Ñ和日志d。
BPP⊆P/polyRVC(n,d)nlogd
有关Haussler的结果如何暗含定理2,请参见
此处。
In particular, by Theorem 1, BPP⊆P/polyBPP⊆P/poly holds over any field. (Interesting is here only the case of infinite fields: for finite ones, much simpler arguments work: Chernoff bound then does the work.) But what about (infinite) semirings that are not fields, or even not rings? Motivated by dynamic programming, I am mainly interested in tropical (max,+)(max,+) and (min,+)(min,+) semirings, but other "non-field" (infinite) semirings are interesting as well.
Note that, over the (max,+)(max,+) semiring, a polynomial
f(x)=∑a∈Aca∏ni=1xaiif(x)=∑a∈Aca∏ni=1xaii with
A⊆NA⊆N and ca∈Rca∈R, turns into the maximization problem
f(x)=maxa∈A {ca+a1x1+a2x2+ ⋯ + a n x n } ; 度 ˚F是(作为习惯)的最大的一个1个 + ⋯ + 一Ñ在所有一个∈ 甲。f(x)=maxa∈A {ca+a1x1+a2x2+⋯+anxn}fa1+⋯+ana∈A
问:是程度的VC维≤ d以上热带半环在多项式多项式ñ 日志d?
≤dnlogd
我承认,要得到一个快速答案可能是一个相当困难的问题:热带代数相当“疯狂”。但是也许有人对为什么热带多项式(如果有的话)比实际多项式能产生更多的零模式有一些想法?还是为什么他们“不应该”?或一些相关参考。
Or, perhaps, the proof of Babai, Ronyai, and Ganapathy (below) can be somehow
"twisted" to work over tropical semirings? Or over any other infinite semirings (which are not fields)?
Proof of Theorem 1:
Assume that a sequence (f1,…,fm)(f1,…,fm) has pp different zero-patterns, and let v1,…,vp∈Rnv1,…,vp∈Rn be witnesses to these zero-patterns. Let Si={k:fk(vi)≠0}Si={k:fk(vi)≠0} be a zero-pattern witnessed by the ii-th vector vivi, and consider the polynomials gi:=∏k∈Sifkgi:=∏k∈Sifk.
We claim that these polynomials are
linearly independent over our field. This claim completes the proof of the theorem since each gigi has degree at most D:=mdD:=md, and the dimension of the space of polynomials of degree at most DD is (n+DD)(n+DD).
To prove the claim, it is enough to note that gi(vj)≠0gi(vj)≠0 if and only if Si⊆SjSi⊆Sj. Suppose contrariwise that a nontrivial linear relation
λ1gi(x)+⋯+λpgp(x)=0λ1gi(x)+⋯+λpgp(x)=0 exists. Let jj be a subscript
such that |Sj||Sj| is minimal among the SiSi with λi≠0λi≠0.
Substitute vjvj in the relation. While λjgj(vj)≠0λjgj(vj)≠0, we have
λigi(vj)=0λigi(vj)=0 for all i≠ji≠j, a contradiction.
◻