热带半环上的多项式的VC维?


14

就像这个问题一样,我对热带max + min + 电路的B P PBPPPP / p o l ypoly 问题感兴趣。这个问题简化为显示热带半环上多项式的VC维的上限(请参见下面的定理2)。 (max,+)(min,+)

R为半环。甲零图案的序列的˚F 1... ˚F 多项式- [R [ X 1... X Ñ ]是子集小号{ 1 ... }为其中存在X [R Ñÿ [R使得对于所有= 1 ...R(f1,,fm)mR[x1,,xn]S{1,,m}xRnyR ˚F X = ÿ当且仅当小号。也就是说,究竟那些多项式的曲线图 ˚F 小号必须击中点X ÿ [R Ñ + 1。(“零模式”,因为条件 ˚F X = ÿ可以通过替换 ˚F X - ý = 0。)让i=1,,mfi(x)=yiSfiiS(x,y)Rn+1fi(x)=yfi(x)y=0Z m = m个度为 d的多项式序列的最大零模式数。因此, 0 Ž 2 。所述 Vapnik等-Chervonenkis维度的 d多项式是 V Ç Ñ d = 最大{ Ž = 2 }Z(m)md0Z(m)2mdVC(n,d):=max{m:Z(m)=2m}

注意:通常,VC维是针对集合F的族F定义为最大基数| S | 一组š使得{ ˚F 小号˚F ˚F } = 2 小号。装配到该帧中,我们可以与每对相关联X ÿ [R Ñ + 1设定˚F X ÿ的所有多项式˚Fd为其˚F F|S|S{FS:FF}=2S(x,y)Rn+1Fx,yfdx = y成立。那么所有这样的集合 F x y的族 F的VC维度恰好是 V C n d f(x)=yFFx,yVC(n,d)

甲琐碎上界= V Ç Ñ d Ñ 日志| R | (我们需要至少2 不同矢量X [R Ñ具有所有2 可能的模式),但它在无限半环是无用的。为了在VC维度上具有良好的上限,我们需要在Z m 上具有良好的上限。在field上,这样的界限是已知的。m=VC(n,d)mnlog|R|2mxRn2mZ(m)

定理1: 在任何 R上,我们有Z m m d + nRnZ(m)(md+nn)
MilnorHeintzWarren 早些时候证明了类似的上限 ; 他们的证明使用了真实代数几何中的沉重技巧。相反,Ronyai,Babai和Ganapathy(我们在下面给出)的定理1的半页证明是线性代数的简单应用。

通过寻找小的满足d + Ñmn <2m,我们得到 VCnd=Onlogd在任何领域都成立。考虑到BPPP/POLy的关系,此处重要的是维仅为d度的对数。这很重要,因为多项式大小的电路可以计算指数级的多项式,并且因为Haussler在PAC学习中的结果(第114页的推论2)(md+nn)<2mVC(n,d)=O(nlogd)BPPPpolyd本文)得出以下结果(我们假设确定性电路被允许使用多数表决来输出其值)。

定理2: P PP / p ö ý适用于在任意半环电路- [R ,其中V Ç Ñ d 仅在多项式Ñ日志dBPPP/polyRVC(n,d)nlogd
有关Haussler的结果如何暗含定理2,请参见此处

In particular, by Theorem 1, BPPP/polyBPPP/poly holds over any field. (Interesting is here only the case of infinite fields: for finite ones, much simpler arguments work: Chernoff bound then does the work.) But what about (infinite) semirings that are not fields, or even not rings? Motivated by dynamic programming, I am mainly interested in tropical (max,+)(max,+) and (min,+)(min,+) semirings, but other "non-field" (infinite) semirings are interesting as well. Note that, over the (max,+)(max,+) semiring, a polynomial f(x)=aAcani=1xaiif(x)=aAcani=1xaii with ANAN and caRcaR, turns into the maximization problem f(x)=maxaA {ca+a1x1+a2x2+ + a n x n } ; 度 ˚F是(作为习惯)的最大的一个1个 + + Ñ在所有一个f(x)=maxaA {ca+a1x1+a2x2++anxn}fa1++anaA

问:是程度的VC维d以上热带半环在多项式多项式ñ 日志ddnlogd

我承认,要得到一个快速答案可能是一个相当困难的问题:热带代数相当“疯狂”。但是也许有人对为什么热带多项式(如果有的话)比实际多项式能产生更多的零模式有一些想法?还是为什么他们“不应该”?或一些相关参考。

Or, perhaps, the proof of Babai, Ronyai, and Ganapathy (below) can be somehow "twisted" to work over tropical semirings? Or over any other infinite semirings (which are not fields)?

Proof of Theorem 1: Assume that a sequence (f1,,fm)(f1,,fm) has pp different zero-patterns, and let v1,,vpRnv1,,vpRn be witnesses to these zero-patterns. Let Si={k:fk(vi)0}Si={k:fk(vi)0} be a zero-pattern witnessed by the ii-th vector vivi, and consider the polynomials gi:=kSifkgi:=kSifk. We claim that these polynomials are linearly independent over our field. This claim completes the proof of the theorem since each gigi has degree at most D:=mdD:=md, and the dimension of the space of polynomials of degree at most DD is (n+DD)(n+DD). To prove the claim, it is enough to note that gi(vj)0gi(vj)0 if and only if SiSjSiSj. Suppose contrariwise that a nontrivial linear relation λ1gi(x)++λpgp(x)=0λ1gi(x)++λpgp(x)=0 exists. Let jj be a subscript such that |Sj||Sj| is minimal among the SiSi with λi0λi0. Substitute vjvj in the relation. While λjgj(vj)0λjgj(vj)0, we have λigi(vj)=0λigi(vj)=0 for all ijij, a contradiction.

Answers:


9

I've realized that the answer to my question is - yes: the VC dimension of degree d polynomials on n variables over any tropical semiring is at most a constant times n2log(n+d). This can be shown using Theorem 1 above. See here for details. So, BPP P/poly holds also for tropical circuits and, hence, also for "pure" dynamic programming algorithms.


N.B. (added 25.06.2019) In the mean time, I've resolved the problem completely in this paper. In such a generality, which I haven't even dreamed at the beginning. Tropical case is here just a very, very special case. And even more curiously: by just an appropriate combination of already know (deep in any respect) results of other authors.

What remains else to do in this (BPP vs. P/poly) direction? Besides the decrease of the size of resulting deterministic circuits (an interesting question in itself).

By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.