如今,线性编程当然已广为人知。我们有许多工作描述了可行解的结构和最优解的结构。我们拥有强大的对偶性,多重时间算法等。
但是,关于LP的最小极大解又有什么了解呢?或等效地,最大最小解决方案?
(这不是一个真正的研究问题,但是也许我们可以在假期中使用一些技术性不强的东西。有待研究的问题,但我只发现了一些零星的论文提到了这个问题。)
为简单起见,让我们集中讨论打包和覆盖LP。在包装的LP,我们都给出了非负矩阵。一种载体,X是可行的,如果X ≥ 0和甲X ≤ 1。我们说x是最大的,如果可行的话,我们不能贪婪地增加任何分量。也就是说,如果ÿ ≥ 0和ÿ ≠ 0,则X + ý是不可行的。最后,x是一个最小最大解,如果它使所有最大解中的目标函数最小。
(您可以类似地定义覆盖LP的最大最小解决方案。)
最小最大解的空间是什么样的?我们如何找到这样的解决方案?找到这样的解决方案有多困难?我们如何近似这样的解决方案?谁来研究这些东西,什么才是正确的术语?
这些问题最初是由边缘控制集和最小最大匹配引起的。众所周知(而且很容易看出),最小最大匹配是最小边沿支配集;相反,给定一个最小的边控制集,很容易构造一个最小的最大匹配。
因此,从本质上讲,它们是相同的问题。这两个问题都是NP难题和APX难题。有一个简单的2近似算法:任何最大匹配。
但是,它们的“自然” LP松弛看起来非常不同。如果您遇到边缘支配集问题并形成自然的LP松弛,那么您将获得覆盖LP。但是,如果您遇到寻找最小最大匹配的问题,并尝试提出LP松弛,那么您会得到什么呢?好吧,分数匹配当然是装箱LP的可行解决方案。那么最大分数匹配是这种LP的最大解,因此最小最大分数匹配是这种LP的最小最大解。:)