匈牙利算法是一种组合优化算法,它解决了多项式时间内的最大权重二部匹配问题,并预见了重要的原始对偶方法的后续发展。该算法是Harold Kuhn在1955年开发和发布的,他将其命名为“匈牙利算法”,因为该算法是基于两位匈牙利数学家DénesKőnig和JenőEgerváry的较早著作。蒙克雷斯(Munkres)在1957年对算法进行了审查,发现它确实是多时制。从那时起,该算法也称为Kuhn-Munkres算法。
尽管匈牙利语包含原始对偶方法的基本思想,但它无需使用任何线性编程(LP)机器即可直接解决最大权重二分匹配问题。因此,在回答以下问题时,Jukka Suomela评论
当然,您可以使用通用LP求解器来求解任何LP,但是专用算法通常具有更好的性能。[...]您通常还可以避免使用精确有理数与浮点数之类的问题;使用整数可以轻松完成所有操作。
换句话说,您不必担心如何从LP解算器中舍入有理数/浮点数来取回给定二部图的最大权重完美匹配。
我的问题如下:
是否有适用于一般无向图的匈牙利算法的概括,而无需像原始匈牙利算法的精神那样使用LP机制?
我更喜欢现代且易于阅读的展览,而不是一些原始的复杂论文。但是任何指针将不胜感激!
在此先感谢您和圣诞快乐!!!
更新:问题在下面的Arman中得到了很好的回答。我只想指出,研究Edmonds的Blossom算法(针对加权情况)的另一个不错的资料是Korte和Vygen的组合优化的第11章 。Google图书实际上显示了我了解该算法所需的几乎所有部分。