8
训练神经网络以区分偶数和奇数
问题:是否有可能仅使用数字本身作为输入来训练NN来区分奇数和偶数? 我有以下数据集: Number Target 1 0 2 1 3 0 4 1 5 0 6 1 ... ... 99 0 100 1 我使用一种非常简单的遗传算法训练了一个带有两个输入神经元(一个是变量Number,另一个是偏向神经元),隐藏层中的9个神经元和一个输出神经元的NN:在每个时期,两组权重“互相对抗;错误率最高的人将输掉,并由获胜者的修改版本代替。 该脚本可以轻松解决诸如AND,OR和XOR运算符之类的简单问题,但是在尝试对奇数和偶数进行分类时会遇到困难。目前,最好的方法是从100个数字中识别出53个数字,这花费了几个小时。我是否将输入归一化似乎没有什么区别。 如果我想作弊,我可以对数据进行预处理,并将%2作为输入提供给NN,但我不想这样做。NN应该能够近似所有函数,包括模运算符(我相信)。我究竟做错了什么?