Questions tagged «information»

9
测量二维二进制矩阵的熵/信息/模式
我想测量二维二进制矩阵的熵/信息密度/图案相似度。让我显示一些图片以供说明: 此显示应具有较高的熵: 一种) 这应该具有中等熵: B) 最后,这些图片应该都具有接近零的熵: C) D) E) 是否有一些捕获熵的索引,分别。这些显示的“样式”? 当然,每种算法(例如,压缩算法;或ttnphns提出的旋转算法)都对显示器的其他功能敏感。我正在寻找一种尝试捕获以下属性的算法: 旋转和轴向对称 聚类量 重复次数 也许更复杂,算法可能对心理的“ 格式塔原理 ”的属性敏感,尤其是: 接近定律: 对称定律:即使距离很远,对称图像也可以集体感知: 具有这些属性的显示应被赋予“低熵值”;具有相当随机/非结构化点的显示应该被分配一个“高熵值”。 我知道,很可能没有一种算法可以捕获所有这些功能。因此,也非常欢迎提出仅针对某些功能甚至仅针对单个功能的算法的建议。 特别是,我正在寻找具体的,现有的算法或特定的,可实现的想法(我将根据这些标准来授予赏金)。


2
分层模型中的Fisher信息
给定以下层次模型, 和 其中是正态分布。有没有办法来得到一个确切的表达式的边缘分布的Fisher信息给出Ç。也就是说,什么是Fisher信息: p(x | c)= \ int p(x | \ mu)p(\ mu | c)d \ mu 在给定c的情况下,我可以得到X的边际分布的表达式。但是区分wrt c然后接受期望似乎非常困难。我是否缺少明显的东西?任何帮助,将不胜感激。μ 〜大号一个p 升一Ç ë(0 ,Ç )Ñ(⋅ ,⋅ )X Ç p (X | C ^ )= ∫ p (X | μ )p (μ | C ^ )ð μ X ç çX∼N(μ,1),X∼N(μ,1), X \sim …

2
观察到的信息矩阵是否是预期信息矩阵的一致估计?
我试图证明在弱一致性最大似然估计器(MLE)处评估的观测信息矩阵是预期信息矩阵的弱一致性估计器。这是被广泛引用的结果,但没有人提供参考或证明(我已经用尽我认为Google搜索结果的前20页和我的统计资料教科书)! 使用MLE的弱一致序列,我可以使用大数弱定律(WLLN)和连续映射定理来获得所需的结果。但是,我相信不能使用连续映射定理。相反,我认为需要使用统一的大数定律(ULLN)。有人知道有证明这一点的参考文献吗?我尝试了ULLN,但为简洁起见,现在省略。 对于这个问题的冗长,我深表歉意,但必须引入一些符号。表示法如下(我的证明在结尾)。 假设我们有随机变量的IID样本{Y1,…,YN}\{Y_1,\ldots,Y_N\}与密度f(Y~|θ)f(\tilde{Y}|\theta),其中θ∈Θ⊆Rk\theta\in\Theta\subseteq\mathbb{R}^{k}(这里Y~\tilde{Y}是具有相同密度的只是一般随机变量作为样本的任何成员)。向量Y=(Y1,…,YN)TY=(Y_1,\ldots,Y_N)^{T}是所有样本向量的向量,其中Yi∈RnY_{i}\in\mathbb{R}^{n}所有i=1,…,Ni=1,\ldots,N。密度的真实参数值是θ0\theta_{0}和 θ Ñ(Ý)是的弱一致最大似然估计(MLE) θ 0。根据规律性条件,Fisher信息矩阵可以写为θ^N(Y)\hat{\theta}_{N}(Y)θ0\theta_{0} I(θ)=−Eθ[Hθ(logf(Y~|θ)]I(\theta)=-E_\theta \left[H_{\theta}(\log f(\tilde{Y}|\theta)\right] 其中Hθ{H}_{\theta}是Hessian矩阵。等效样本为 IN(θ)=∑i=1NIyi(θ),I_N(\theta)=\sum_{i=1}^N I_{y_i}(\theta), 其中Iyi=−Eθ[Hθ(logf(Yi|θ)]I_{y_i}=-E_\theta \left[H_{\theta}(\log f(Y_{i}|\theta)\right]。所观察到的信息矩阵是; J(θ)=−Hθ(logf(y|θ)J(\theta) = -H_\theta(\log f(y|\theta), (有些人的需求矩阵在评估θ,但有些却没有)。样本观察信息矩阵为:θ^\hat{\theta} JN(θ)=∑Ni=1Jyi(θ)J_N(\theta)=\sum_{i=1}^N J_{y_i}(\theta) 其中Jyi(θ)=−Hθ(logf(yi|θ)J_{y_i}(\theta)=-H_\theta(\log f(y_{i}|\theta)。 我可以证明在所述估计的概率收敛到我(θ ),但不ñ - 1 Ĵ Ñ(θ Ñ(Ý ))到我(θ 0)N−1JN(θ)N^{-1}J_N(\theta)I(θ)I(\theta)N−1JN(θ^N(Y))N^{-1}J_{N}(\hat{\theta}_N(Y))I(θ0)I(\theta_{0})。到目前为止,这是我的证明; Now (JN(θ))rs=−∑Ni=1(Hθ(logf(Yi|θ))rs(J_{N}(\theta))_{rs}=-\sum_{i=1}^N (H_\theta(\log f(Y_i|\theta))_{rs} is element (r,s)(r,s) of JN(θ)J_N(\theta), for any r,s=1,…,kr,s=1,\ldots,k. If the sample …

By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.