2
Logistic回归功效分析的仿真-设计的实验
这个问题是对@Greg Snow给出的答案的回应,该答案是我提出的有关使用Logistic回归和SAS进行功率分析的问题Proc GLMPOWER。 如果我正在设计一个实验并将对结果进行析因逻辑回归分析,该如何使用模拟(和此处)进行功效分析? 这是一个简单的示例,其中有两个变量,第一个具有三个可能的值{0.03,0.06,0.09},第二个是虚拟指示器{0,1}。对于每种组合,我们估计每种组合的响应率(响应者数量/投放市场的人数)。此外,我们希望因子的第一个组合的数量是其他因子的3倍(可以认为是相等的),因为该第一个组合是我们尝试过的真实版本。这种设置类似于链接问题中提到的SAS课程中给出的设置。 用于分析结果的模型将是具有主要影响和相互作用(响应为0或1)的逻辑回归。 mod <- glm(response ~ Var1 + Var2 + I(Var1*Var2)) 如何模拟用于此模型的数据集进行功率分析? 当我通过SAS运行时Proc GLMPOWER(使用STDDEV =0.05486016 对应于sqrt(p(1-p))其中p是显示的响应率的加权平均值): data exemplar; input Var1 $ Var2 $ response weight; datalines; 3 0 0.0025 3 3 1 0.00395 1 6 0 0.003 1 6 1 0.0042 1 9 0 0.0035 1 …