1
哪种是网络荟萃分析的最佳方法?
现在有几种不同的方法可以进行网络荟萃分析或混合治疗比较。 最常用和可访问的可能是以下几种: 在贝叶斯框架中: WinBUGS中的按处理设计交互方法(例如Jackson等); WinBUGS中基于手臂的分层贝叶斯建模(例如Zhao等); 分层对比度为基础(即,节点分裂)贝叶斯建模,无论是与WinBUGS软件或通过gemtc与rjags在R(例如Dias等或货车Valkenhoef等人); WinBUGS中的集成嵌套拉普拉斯近似(INLA)(例如Sauter等); 在常客框架中: SAS的因子分析方差分析(例如Piepho); SAS中的多层次网络荟萃分析(例如Greco等); mvmeta在Stata或R中的多元元回归(例如White等); lme和netmetaR中进行网络荟萃分析(例如Lumley,但仅限于两臂试验,或Rucker等)。 我的问题很简单:它们大致相等还是在大多数情况下更适合进行主要分析(因此将其他保留为辅助分析)? 更新 一段时间以来,对网络元分析的方法进行了一些比较分析: Carlin BP,Hong H,Shamliyan TA,Sainfort F,Kane RL。案例研究比较贝叶斯方法和常见方法进行多次治疗比较。医疗保健研究与质量局(美国)。2013。