为什么GLM中的准泊松不被视为负二项式的特例?
我正在尝试将广义线性模型拟合到可能过度分散的某些计数数据集。此处适用的两个规范分布是泊松和负二项式(Negbin),其EV和方差μμ\mu VarP=μVarP=μVar_P = \mu VarNB=μ+μ2θVarNB=μ+μ2θVar_{NB} = \mu + \frac{\mu^2}{\theta} 可以分别使用glm(..,family=poisson)和将其安装在R中glm.nb(...)。还有一个quasipoisson家庭,以我的理解,这是一个经过调整的泊松,具有相同的EV和方差 VarQP=ϕμVarQP=ϕμVar_{QP} = \phi\mu, 即落在Poisson和Negbin之间。准泊松族的主要问题是没有相应的可能性,因此没有许多非常有用的统计检验和拟合度量(AIC,LR等)。 如果比较QP和Negbin方差,可能会注意到可以通过来使它们相等。继续这种逻辑,您可以尝试将准泊松分布表示为Negbin的特例:ϕ=1+μθϕ=1+μθ\phi = 1 + \frac{\mu}{\theta} QP(μ,ϕ)=NB(μ,θ=μϕ−1)QP(μ,ϕ)=NB(μ,θ=μϕ−1)QP\,(\mu,\phi) = NB\,(\mu,\theta = \frac{\mu}{\phi-1}), 即,一个\ theta的Negbin与\ muθθ\theta线性相关。我试图通过根据上述公式生成一个随机的数字序列并将其拟合为来验证这种想法:μμ\muglm #fix parameters phi = 3 a = 1/50 b = 3 x = 1:100 #generating points according to an exp-linear curve #this way …