我知道我对逻辑回归的理解中缺少一些东西,非常感谢您的帮助。 据我所知,逻辑回归假设给定输入的结果为“ 1”的概率是通过逆逻辑函数传递的输入的线性组合。以下R代码对此进行了举例说明: #create data: x1 = rnorm(1000) # some continuous variables x2 = rnorm(1000) z = 1 + 2*x1 + 3*x2 # linear combination with a bias pr = 1/(1+exp(-z)) # pass through an inv-logit function y = pr > 0.5 # take as '1' if probability > 0.5 …
当我使用GAM时,它给了我剩余的DF为(代码的最后一行)。这意味着什么?超越GAM示例,通常,自由度可以是非整数吗?26.626.626.6 > library(gam) > summary(gam(mpg~lo(wt),data=mtcars)) Call: gam(formula = mpg ~ lo(wt), data = mtcars) Deviance Residuals: Min 1Q Median 3Q Max -4.1470 -1.6217 -0.8971 1.2445 6.0516 (Dispersion Parameter for gaussian family taken to be 6.6717) Null Deviance: 1126.047 on 31 degrees of freedom Residual Deviance: 177.4662 on 26.6 degrees of …
CrossValidated对于何时以及如何应用King和Zeng(2001)的罕见事件偏差校正有几个问题。我正在寻找与众不同的东西:一个基于模拟的最小演示,证明存在偏差。 特别是国王和曾国 “……在极少数事件数据中,几千个样本量的概率偏差可能实际上是有意义的,并且处于可预测的方向:估计的事件概率太小。” 这是我尝试模拟R中的这种偏差: # FUNCTIONS do.one.sim = function(p){ N = length(p) # Draw fake data based on probabilities p y = rbinom(N, 1, p) # Extract the fitted probability. # If p is constant, glm does y ~ 1, the intercept-only model. # If p is not constant, assume …