1
比较R中发生GLM后的因素水平
以下是有关我的处境的一些背景信息:我的数据是指被捕食者成功吃掉的猎物的数量。由于每个试验中猎物的数量都是有限的(可用25个),因此我有一列“ Sample”代表可用猎物的数量(因此,每个试验中有25个),另外一个名为“ Count”的数字表示成功的数量(吃了多少猎物)。我的分析基于R书中有关比例数据的示例(第578页)。解释变量是温度(4个级别,我将其视为因素)和捕食者的性别(显然是雄性还是雌性)。所以我最终得到这个模型: model <- glm(y ~ Temperature+Sex+Temperature*Sex data=predator, family=quasibinomial) 得出“偏差分析”表后,事实证明,温度和性别(但不存在相互作用)对猎物的消耗有显着影响。现在,我的问题是:我需要知道哪个温度不同,即,我必须将这四个温度相互比较。如果我有线性模型,则可以使用TukeyHSD函数,但由于使用的是GLM,所以不能。我一直在浏览MASS软件包,并尝试建立一个对比度矩阵,但是由于某种原因它不起作用。有什么建议或参考吗? 这是我从模型中获得的摘要,如果可以使它更清楚…… y <- cbind(data$Count, data$Sample-data$Count) model <- glm(y ~ Temperature+Sex+Temperature*Sex data=predator, family=quasibinomial) > summary(model) # Call: # glm(formula = y ~ Temperature + Sex + Temperature * Sex, family=quasibinomial, data=data) # Deviance Residuals: # Min 1Q Median 3Q Max …