Questions tagged «variance-stabilizing»

1
为什么建议对计数数据使用平方根变换?
当您拥有计数数据时,通常建议取平方根。(有关简历一些例子,看看@ HarveyMotulsky的答案在这里,或@ whuber的答案在这里。)另外,装修与分布泊松响应变量广义线性模型时,日志是规范链接。这有点像对响应数据进行对数转换(尽管更准确地说,是对控制响应分布的参数进行对数转换)。因此,这两者之间存在某种张力。 λλ\lambda 您如何调和这种(明显的)差异? 为什么平方根比对数好?

4
边缘情况下精度和召回率的正确值是多少?
精度定义为: p = true positives / (true positives + false positives) 对不对,作为true positives和false positives做法0,精度接近1? 召回相同的问题: r = true positives / (true positives + false negatives) 我目前正在实施统计测试,需要计算这些值,有时分母为0,我想知道在这种情况下应返回哪个值。 PS:请原谅,不恰当的标签,我想用recall,precision和limit,但我不能创造新的标签呢。
20 precision-recall  data-visualization  logarithm  references  r  networks  data-visualization  standard-deviation  probability  binomial  negative-binomial  r  categorical-data  aggregation  plyr  survival  python  regression  r  t-test  bayesian  logistic  data-transformation  confidence-interval  t-test  interpretation  distributions  data-visualization  pca  genetics  r  finance  maximum  probability  standard-deviation  probability  r  information-theory  references  computational-statistics  computing  references  engineering-statistics  t-test  hypothesis-testing  independence  definition  r  censoring  negative-binomial  poisson-distribution  variance  mixed-model  correlation  intraclass-correlation  aggregation  interpretation  effect-size  hypothesis-testing  goodness-of-fit  normality-assumption  small-sample  distributions  regression  normality-assumption  t-test  anova  confidence-interval  z-statistic  finance  hypothesis-testing  mean  model-selection  information-geometry  bayesian  frequentist  terminology  type-i-and-ii-errors  cross-validation  smoothing  splines  data-transformation  normality-assumption  variance-stabilizing  r  spss  stata  python  correlation  logistic  logit  link-function  regression  predictor  pca  factor-analysis  r  bayesian  maximum-likelihood  mcmc  conditional-probability  statistical-significance  chi-squared  proportion  estimation  error  shrinkage  application  steins-phenomenon 


5
除了平方根,对数等普通转换外,还常用哪些其他归一化转换?
在测试成绩的分析中(例如在教育或心理学中),常用的分析技术通常会假设数据是正态分布的。但是,有时分数往往会与正常水平大相径庭。 我熟悉一些基本的规范化转换,例如:平方根,对数,用于减少正偏斜的倒数转换,用于减少负偏斜的上述反射形式,平方函数的平方。我听说过反正弦变换和幂变换,尽管我并不真正了解它们。 因此,我对分析师通常使用的其他转换感到好奇吗?
By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.