在保险定价和政府政策分析等领域,通常需要为人寿分配一定数量的货币,以便将其与其他货币进行比较。因此,经济学家有一种衡量生活价值的方法,在某种意义上可以量化一个人对自己的生活的重视程度。对于大多数人来说,这通常约为一千万美元。现在,从字面上看,这不是一个人付出的金钱,因为这个数目通常是无穷大。可能没有多少钱能说服普通人放弃自己的生命,而普通人愿意花任何钱来挽救自己的生命。所以技术定义比较棘手:一个人一生的统计值就是美元数量使得对所有的概率,或至少的所有值比较接近0的人将是一种情况,他们死亡的几率是无差异的和的情况下他们失去的机会块钱。(在减少死亡机会和赚钱方面,可以给出一个等效的定义。)
我的问题不是关于这个概念为什么有用的问题。我了解它的效用。(没有双关语。)我的问题是,为什么生命的统计价值应完全存在?就是说,为什么对于所有值,或者甚至是足够接近所有值,都存在一个满足该定义的值?
让我们更正式地讨论这一点。设是一组可能的偏好,并且让是该组“赌博”或“乐透”过的。冯·诺依曼-摩根斯坦定理指出,如果一个人对的偏好排序满足一定的理性公理,那么该人的偏好就可以由效用函数u表示:A→ℝ。这意味着一个人在任何彩票L上的价值是在L的概率分布下u的期望值。
因此,如果一个人对获得10美元的机会只有1%和获得巧克力圣代的可能性只有1%漠不关心,而对获得10美元和2%的机会却有2%的概率漠不关心,我也不会感到惊讶有机会获得巧克力圣代;这只是向我表明,该人的偏好符合冯·诺伊曼-摩根斯坦式的理性公理。但是我不明白为什么,如果一个人对失去1000万美元的可能性只有1%,而对死亡的可能性只有1%,那么他们对损失1000万美元的可能性只有2%,对于2死亡几率。那是因为生与死与冯·诺依曼·摩根斯特恩公理不相称。平均而言,生存的效用是无限的 然而,他们为小小的死亡风险分配了有限的价值。因此,我认为没有任何理由相信涉及生存和死亡风险的彩票应遵守冯·诺伊曼-摩根斯坦斯特公理。
但是从经验上来看,似乎研究发现,至少对于足够小的值,生命的统计值是一个定义明确且可测量的量。那是什么原因呢?那些生活风险很小的彩票不遵守冯·诺伊曼-摩根斯坦特公理的原因是什么呢?