4
分类概率阈值
我有一个关于分类的问题。令f为一个分类器,在给定一些数据D的情况下输出一组概率。通常,人们会说:好吧,如果P(c | D)> 0.5,我们将分配一个类1,否则将分配一个0(将其设为二进制)分类)。 我的问题是,如果我发现,如果我将概率也大于1,即0.2,则分类器的性能会更好。在进行分类时使用此新阈值是否合法? 我将解释在数据发出较小信号的情况下降低分类界限的必要性;但对于分类问题仍然很重要。 我意识到这是一种实现方法,但是如果这不是正确的想法,那将是什么数据转换,它们以类似的方式强调各个特征,因此阈值可以保持在0.5?