Questions tagged «error»

估计或预测的误差是其与真实值的偏差,它可能是不可观察的(例如,回归参数)或可观察的(例如,未来的实现)。使用[error-message]标签询问软件错误。

3
如果残差是正态分布的,而y不是,该怎么办?
我有一个奇怪的问题。假设您有一个较小的样本,您要使用简单线性模型分析的因变量高度偏左。因此,您假设üüu不是正态分布的,因为这将导致呈正态分布ÿÿy。但是,当您计算QQ正态图时,有证据表明残差呈正态分布。因此,任何人都可以假设误差项是正态分布的,尽管ÿÿy不是。那么,当误差项看起来是正态分布而ÿÿy不是时,它是什么意思呢?

6
残差是“预测的减去实际值”还是“预测的实际减去值”
我已经看到“残差”被不同定义为“预测的减去实际值”或“实际的减去预测值”。为了说明目的,为了显示两个公式都被广泛使用,请比较以下Web搜索: 剩余的“预测的减去实际的” 剩余的“实际减去预期” 在实践中,几乎没有任何区别,因为单个残差的符号通常并不重要(例如,平方或取绝对值)。但是,我的问题是:这两个版本之一(预测优先与实际优先)是否被视为“标准”?我希望在使用中保持一致,因此,如果有完善的常规标准,我希望遵循它。但是,如果没有标准,我很乐意接受这作为答案,只要可以令人信服地证明没有标准约定。

1
GradientDescentOptimizer和AdamOptimizer(TensorFlow)之间的区别?
我已经在TensorFlow中编写了一个简单的MLP,它正在对XOR-Gate进行建模。 因此对于: input_data = [[0., 0.], [0., 1.], [1., 0.], [1., 1.]] 它应该产生以下内容: output_data = [[0.], [1.], [1.], [0.]] 该网络具有一个输入层,一个隐藏层和一个输出层,每个层具有2、5和1个神经元。 目前,我有以下交叉熵: cross_entropy = -(n_output * tf.log(output) + (1 - n_output) * tf.log(1 - output)) 我也尝试过这种更简单的选择: cross_entropy = tf.square(n_output - output) 以及其他一些尝试。 但是,无论我的设置是什么,的错误GradientDescentOptimizer减少的速度都比的慢得多AdamOptimizer。 实际上tf.train.AdamOptimizer(0.01),经过400-800个学习步骤(取决于学习率,在哪里0.01获得最好的结果)后产生了非常好的结果,而tf.train.GradientDescentOptimizer无论使用哪种交叉熵计算或学习率,始终需要超过2000个学习步骤。 为什么会这样呢?看来AdamOptimizer永远是更好的选择?!

1
如何解释错误措施?
我正在Weka中为某个数据集运行分类,并且我注意到,如果我试图预测标称值,则输出将具体显示正确和错误地预测的值。但是,现在我为数字属性运行它,输出为: Correlation coefficient 0.3305 Mean absolute error 11.6268 Root mean squared error 46.8547 Relative absolute error 89.2645 % Root relative squared error 94.3886 % Total Number of Instances 36441 我该怎么解释?我已经尝试过搜索每个概念,但由于统计数据完全不在我的专业领域,因此我不太了解。就统计而言,我将非常感谢ELI5类型的答案。

5
最小化平方误差等于最小化绝对误差吗?为什么平方误差比后者更受欢迎?
当我们进行线性回归,以适应一组数据点(X 1,ÿ 1),(X 2,ÿ 2),。。。,(x n,y n),经典方法将平方误差最小化。我一直对一个问题感到困惑,该问题将最小化平方误差会产生与最小化绝对误差相同的结果ÿ= a x + by=ax+by=ax+b(x1个,ÿ1个),(X2,ÿ2),。。。,(xñ,ÿñ)(x1,y1),(x2,y2),...,(xn,yn)(x_1,y_1),(x_2,y_2),...,(x_n,y_n)?如果没有,为什么最小化平方误差更好?除了“目标函数是可微的”之外,还有其他原因吗? 平方误差也广泛用于评估模型性能,但是绝对误差不那么受欢迎。为什么平方误差比绝对误差更常用?如果不考虑求导数,则计算绝对误差与计算平方误差一样容易,那么为什么平方误差如此普遍?有什么独特的优势可以解释其盛行吗? 谢谢。

2
ImageNet:什么是top-1和top-5错误率?
在ImageNet分类论文中,top-1和top-5错误率是衡量某些解决方案成功与否的重要单位,但是这些错误率是多少? 在Krizhevsky等人的《具有深度卷积神经网络的ImageNet分类 》中。每个基于一个CNN的解决方案(第7页)都没有前5个错误率,而具有5个和7个CNN的解决方案则有5个错误率(而且7个CNN的错误率比5个CNN的更好)。 这是否意味着top-1错误率是一个CNN的最佳单一错误率? 前五位的错误率仅仅是五个CNN的累积错误率吗?

3
如何解释随机森林的OOB和混淆矩阵?
我从某人那里获得了R脚本来运行随机森林模型。我修改并运行了一些员工数据。我们正在尝试预测自愿离职。 以下是一些其他信息:这是一个分类模型,其中0 =员工留下,1 =员工终止,我们目前仅查看十二个预测变量,数据“不平衡”,因为术语记录约占7占总记录集的百分比。 我使用各种mtry和ntree选择来运行模型,但是选择了以下内容。OOB是6.8%,我认为这很好,但是混淆矩阵似乎在讲另一个预测术语的方法,因为错误率非常高,达到92.79%。我认为我不能依靠和使用此模型是正确的,因为预测术语的高错误率?还是可以做一些事情来使用RF并获得较小的错误率来预测术语? FOREST_model <- randomForest(theFormula, data=trainset, mtry=3, ntree=500, importance=TRUE, do.trace=100) ntree OOB 1 2 100: 6.97% 0.47% 92.79% 200: 6.87% 0.36% 92.79% 300: 6.82% 0.33% 92.55% 400: 6.80% 0.29% 92.79% 500: 6.80% 0.29% 92.79% > print(FOREST_model) Call: randomForest(formula = theFormula, data = trainset, mtry = 3, ntree …

3
手动计算逻辑回归95%置信区间与在R中使用confint()函数之间为什么会有区别?
亲爱的大家-我注意到我无法解释的怪事,可以吗?总之:在logistic回归模型中计算置信区间的手动方法和R函数confint()得出不同的结果。 我一直在研究Hosmer&Lemeshow的Applied Logistic回归(第二版)。在第3章中,有一个计算比值比和95%置信区间的示例。使用R,我可以轻松地重现模型: Call: glm(formula = dataset$CHD ~ as.factor(dataset$dich.age), family = "binomial") Deviance Residuals: Min 1Q Median 3Q Max -1.734 -0.847 -0.847 0.709 1.549 Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) -0.8408 0.2551 -3.296 0.00098 *** as.factor(dataset$dich.age)1 2.0935 0.5285 3.961 7.46e-05 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ …
34 r  regression  logistic  confidence-interval  profile-likelihood  correlation  mcmc  error  mixture  measurement  data-augmentation  r  logistic  goodness-of-fit  r  time-series  exponential  descriptive-statistics  average  expected-value  data-visualization  anova  teaching  hypothesis-testing  multivariate-analysis  r  r  mixed-model  clustering  categorical-data  unsupervised-learning  r  logistic  anova  binomial  estimation  variance  expected-value  r  r  anova  mixed-model  multiple-comparisons  repeated-measures  project-management  r  poisson-distribution  control-chart  project-management  regression  residuals  r  distributions  data-visualization  r  unbiased-estimator  kurtosis  expected-value  regression  spss  meta-analysis  r  censoring  regression  classification  data-mining  mixture 

4
真值为零时如何计算相对误差?
当真实值为零时,如何计算相对误差? 假设我有和。如果我将相对误差定义为:xtrue=0xtrue=0x_{true} = 0xtestxtestx_{test} relative error=xtrue−xtestxtruerelative error=xtrue−xtestxtrue\text{relative error} = \frac{x_{true}-x_{test}}{x_{true}} 那么相对误差总是不确定的。如果相反,我使用定义: relative error=xtrue−xtestxtestrelative error=xtrue−xtestxtest\text{relative error} = \frac{x_{true}-x_{test}}{x_{test}} 那么相对误差总是100%。两种方法似乎都没有用。还有其他选择吗?

1
当不满足假设时,回归模型有多不正确?
在拟合回归模型时,如果不满足输出的假设,将会发生什么,特别是: 如果残差不均等会怎样?如果残差在残差与拟合图中显示出增加或减少的模式。 如果残差不是正态分布并且未通过Shapiro-Wilk检验,会发生什么?Shapiro-Wilk正态性检验是一个非常严格的检验,有时,即使Normal-QQ图看起来有些合理,数据也无法通过检验。 如果一个或多个预测变量不是正态分布,在正态QQ图上看起来不正确,或者数据未通过Shapiro-Wilk检验,该怎么办? 我知道没有硬的黑白划分,0.94是正确的,而0.95是错误的,在这个问题上,我想知道: 未能通过正态性意味着对于根据R-Squared值而言非常合适的模型。它变得不那么可靠,还是完全没有用? 偏差在多大程度上可以接受,或者完全可以接受? 当对数据应用转换以满足正态性标准时,如果数据更正常(Shapiro-Wilk测试中的P值较高,正常QQ图上的外观更好),或者该模型无用(等效值或比原始版本差),直到数据通过正常性测试?

1
从lmer模型计算效果的可重复性
我刚刚碰到了这篇论文,该论文描述了如何通过混合效应建模来计算测量的可重复性(又称可靠性,又称类内相关性)。R代码为: #fit the model fit = lmer(dv~(1|unit),data=my_data) #obtain the variance estimates vc = VarCorr(fit) residual_var = attr(vc,'sc')^2 intercept_var = attr(vc$id,'stddev')[1]^2 #compute the unadjusted repeatability R = intercept_var/(intercept_var+residual_var) #compute n0, the repeatability adjustment n = as.data.frame(table(my_data$unit)) k = nrow(n) N = sum(n$Freq) n0 = (N-(sum(n$Freq^2)/N))/(k-1) #compute the adjusted repeatability Rn = …
28 mixed-model  reliability  intraclass-correlation  repeatability  spss  factor-analysis  survey  modeling  cross-validation  error  curve-fitting  mediation  correlation  clustering  sampling  machine-learning  probability  classification  metric  r  project-management  optimization  svm  python  dataset  quality-control  checking  clustering  distributions  anova  factor-analysis  exponential  poisson-distribution  generalized-linear-model  deviance  machine-learning  k-nearest-neighbour  r  hypothesis-testing  t-test  r  variance  levenes-test  bayesian  software  bayesian-network  regression  repeated-measures  least-squares  change-scores  variance  chi-squared  variance  nonlinear-regression  regression-coefficients  multiple-comparisons  p-value  r  statistical-significance  excel  sampling  sample  r  distributions  interpretation  goodness-of-fit  normality-assumption  probability  self-study  distributions  references  theory  time-series  clustering  econometrics  binomial  hypothesis-testing  variance  t-test  paired-comparisons  statistical-significance  ab-test  r  references  hypothesis-testing  t-test  normality-assumption  wilcoxon-mann-whitney  central-limit-theorem  t-test  data-visualization  interactive-visualization  goodness-of-fit 

2
方差和均方误差之间有什么区别?
我很惊讶以前没有问过这个问题,但是我找不到关于stats.stackexchange的问题。 这是计算正态分布样本方差的公式: ∑(X−X¯)2n−1∑(X−X¯)2n−1\frac{\sum(X - \bar{X}) ^2}{n-1} 这是用于在简单的线性回归中计算观测值的均方误差的公式: ∑(yi−y^i)2n−2∑(yi−y^i)2n−2\frac{\sum(y_i - \hat{y}_i) ^2}{n-2} 这两个公式有什么区别?我可以看到的唯一区别是MSE使用。因此,如果这是唯一的区别,为什么不将它们都称为方差,而将其具有不同的自由度呢?n−2n−2n-2
27 variance  error 

8
概率误差条有什么意义吗?
人们经常说某个事件发生的可能性为50-60%。有时我什至会看到人们对概率分配给出明确的误差线。这些陈述是否具有任何意义,或者仅仅是出于语言上的不适而又为固有不可知的事物选择了特定的数字?

2
如何设计和实现不对称损失函数进行回归?
问题 在回归中,通常会计算出样本的均方误差(MSE): 来衡量预测变量的质量。MSE = 1ñ∑我= 1ñ(克(x一世)− gˆ(x一世))2MSE=1n∑i=1n(g(xi)−g^(xi))2 \text{MSE} = \frac{1}{n} \sum_{i=1}^n\left(g(x_i) - \widehat{g}(x_i)\right)^2 现在,我正在研究一个回归问题,该问题的目的是在给定许多数字特征的情况下,预测客户愿意为产品支付的价格。如果预测价格过高,则没有客户会购买该产品,但是金钱损失很低,因为价格可以简单地降低。当然不应太高,否则可能会导致长时间不购买该产品。另一方面,如果预测价格过低,则将很快购买产品,而没有机会调整价格。 换句话说,学习算法应该预测稍高的价格,如有必要,可以将其降低,而不是低估会导致立即金钱损失的真实价格。 题 您如何设计一个包含这种成本不对称性的误差度量? 可能的解决方案 定义非对称损失函数的一种方法是简单地乘以权重: 其中是我们可以调整的参数,以更改不对称程度。我在这里找到了。在保持二次损失的同时,这似乎是最直接的事情。α&Element; (0,1)1个ñ∑我= 1ñ∣∣α - 1(克(x一世)− gˆ(x一世))&lt; 0∣∣⋅ (克(x一世)− gˆ(x一世))21n∑i=1n|α−1(g(xi)−g^(xi))&lt;0|⋅(g(xi)−g^(xi))2 \frac{1}{n} \sum_{i=1}^n \left| \alpha - \mathbb{1}_{(g(x_i) - \widehat{g}(x_i)) < 0} \right|\cdot \left(g(x_i) - \widehat{g}(x_i)\right)^2 α &Element; (0 ,1 )α∈(0,1)\alpha \in (0,1)


By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.