3
比较和对比,p值,显着性水平和I型错误
我想知道是否有人可以简要介绍p值的定义和使用,显着性水平和I类错误。 我了解p值的定义是“获得至少与我们实际观察到的数据一样极端的测试统计信息的概率”,而显着性水平只是用来衡量p值是否有意义的任意临界值。 。I类错误是拒绝原假设为零的错误。但是,我不确定重要性级别和I类错误之间的区别,这是不是一个相同的概念? 例如,假设有一个非常简单的实验,我将硬币掷1000次并计算它落在“头”上的次数。我的零假设H0是正面= 500(无偏硬币)。然后,将我的显着性水平设置为alpha = 0.05。 我将硬币翻转1000次,然后计算p值,如果p值> 0.05,则我无法拒绝原假设,如果p值<0.05,则我拒绝原假设。 现在,如果我重复进行此实验,每次计算p值,或者拒绝或未能拒绝原假设,并保持对我拒绝/失败拒绝的计数,那么我最终将拒绝5%的原假设实际上是正确的,对吗?这是类型I错误的定义。因此,如果执行重复实验,Fisher重要性检验中的重要性水平实质上就是Neyman-Pearson假设检验中的I型错误。 现在关于p值,如果我从上一个实验中获得了0.06的p值,并且我进行了多次实验并计算了所有从0到0.06得到p值的值,那么我也将没有拒绝真实零假设的可能性为6%?