2
贝叶斯估计量不受选择偏差的影响
贝叶斯估计量是否不受选择偏差的影响? 大多数讨论高维估计的论文,例如整个基因组序列数据,通常会提出选择偏见的问题。选择偏差是由于以下事实而产生的:尽管我们有成千上万的潜在预测变量,但只有很少的预测变量会被选择,并且对所选的少数变量进行推断。因此,该过程分两个步骤进行:(1)选择预测变量的子集(2)对选择集进行推断,例如估计比值比。戴维德(Dawid)在其1994年的悖论论文中重点研究了无偏估计量和贝叶斯估计量。他将问题简化为选择最大的效果,这可能是治疗效果。 然后他说,无偏估计量受选择偏差的影响。他使用了这个例子:假设 然后每个Z iZi∼N(δi,1),i=1,…,NZi∼N(δi,1),i=1,…,N Z_i\sim N(\delta_i,1),\quad i=1,\ldots,N ZiZiZ_i对于是无偏的。令 ,估计量 但是有偏见(肯定地)表示\ max \ {\ delta_1,\ delta_2,\ ldots,\ delta_N \}。用詹森的不等式可以很容易地证明这一说法。因此,如果我们知道i _ {\ max},即最大\ delta_i的索引,我们将仅使用Z_ {i _ {\ max}}作为其估计量而无偏。但是因为我们不知道这一点,所以我们使用\ gamma_1(\ mathbf {Z})来代替它(有偏)。ž = (Ž 1,Ž 2,... ,Ž Ñ )Ť γ 1(ż)= 最大{ Ž 1,Ž 2,... ,ž Ñ } 最大值{ δ 1,δ 2,... …