4
贝叶斯和常驻点估计量在什么条件下重合?
对于平坦的先验,ML(频率-最大似然)和MAP(贝叶斯-最大后验)估计量是重合的。 但是,更笼统地说,我说的是作为某些损失函数的优化子而得出的点估计量。即 )X(x^(.)=argminE(L(X−x^(y))|y) (Bayesian) x^(.)=argminE(L(X−x^(y))|y) (Bayesian) \hat x(\,. ) = \text{argmin} \; \mathbb{E} \left( L(X-\hat x(y)) \; | \; y \right) \qquad \; \,\text{ (Bayesian) } x^(.)=argminE(L(x−x^(Y))|x)(Frequentist)x^(.)=argminE(L(x−x^(Y))|x)(Frequentist) \hat x(\,. ) = \text{argmin} \; \mathbb{E} \left( L(x-\hat x(Y)) \; | \; x \right) \qquad \text{(Frequentist)} 其中EE\mathbb{E}是期望算子,LLL是损失函数(最小为零),x^(y)x^(y)\hat x(y) 是估计器,给定参数x的数据y,并且随机变量用大写字母表示。yyyxxx 是否有人知道LLL,xxx和y的pdf yyy,施加的线性度和/或无偏度的任何条件,这些条件在哪些条件下估计会重合? 编辑 …