Questions tagged «interarrival-time»

2
分布反映情况,其中一些等待带领我们期待着更多的等待
在上彼得泰尔对初创企业的演讲阅读布莱克法师的笔记,我碰到这个比喻的技术前沿: 想象世界被池塘,湖泊和海洋所覆盖。您坐在船上,在水里。但这是非常有雾的,所以您不知道它到另一边有多远。您不知道自己是在池塘,湖泊还是海洋中。 如果您在池塘里,可能会需要大约一个小时的穿越时间。因此,如果您整天都在外面,那么您要么在湖中,要么在海洋中。如果您已经出门一年了,那么您正在穿越海洋。旅程越长,预期的剩余旅程就越长。的确,随着时间的流逝,您越来越接近另一端。但是在这里,时间的流逝也表明您还有很长的路要走。 我的问题是:是否存在一种可以最好地模拟这种情况的概率分布或统计框架,尤其是粗体部分?

1
R / mgcv:为什么te()和ti()张量积产生不同的曲面?
的mgcv软件包R具有两个功能,用于拟合张量积相互作用:te()和ti()。我了解两者之间的基本分工(拟合非线性交互与将这种交互分解为主要效果和交互)。我不明白的是为什么te(x1, x2)而ti(x1) + ti(x2) + ti(x1, x2)可能产生(略)不同的结果。 MWE(改编自?ti): require(mgcv) test1 <- function(x,z,sx=0.3,sz=0.4) { x <- x*20 (pi**sx*sz)*(1.2*exp(-(x-0.2)^2/sx^2-(z-0.3)^2/sz^2)+ 0.8*exp(-(x-0.7)^2/sx^2-(z-0.8)^2/sz^2)) } n <- 500 x <- runif(n)/20;z <- runif(n); xs <- seq(0,1,length=30)/20;zs <- seq(0,1,length=30) pr <- data.frame(x=rep(xs,30),z=rep(zs,rep(30,30))) truth <- matrix(test1(pr$x,pr$z),30,30) f <- test1(x,z) y <- f + rnorm(n)*0.2 par(mfrow = c(2,2)) # …
11 r  gam  mgcv  conditional-probability  mixed-model  references  bayesian  estimation  conditional-probability  machine-learning  optimization  gradient-descent  r  hypothesis-testing  wilcoxon-mann-whitney  time-series  bayesian  inference  change-point  time-series  anova  repeated-measures  statistical-significance  bayesian  contingency-tables  regression  prediction  quantiles  classification  auc  k-means  scikit-learn  regression  spatial  circular-statistics  t-test  effect-size  cohens-d  r  cross-validation  feature-selection  caret  machine-learning  modeling  python  optimization  frequentist  correlation  sample-size  normalization  group-differences  heteroscedasticity  independence  generalized-least-squares  lme4-nlme  references  mcmc  metropolis-hastings  optimization  r  logistic  feature-selection  separation  clustering  k-means  normal-distribution  gaussian-mixture  kullback-leibler  java  spark-mllib  data-visualization  categorical-data  barplot  hypothesis-testing  statistical-significance  chi-squared  type-i-and-ii-errors  pca  scikit-learn  conditional-expectation  statistical-significance  meta-analysis  intuition  r  time-series  multivariate-analysis  garch  machine-learning  classification  data-mining  missing-data  cart  regression  cross-validation  matrix-decomposition  categorical-data  repeated-measures  chi-squared  assumptions  contingency-tables  prediction  binary-data  trend  test-for-trend  matrix-inverse  anova  categorical-data  regression-coefficients  standard-error  r  distributions  exponential  interarrival-time  copula  log-likelihood  time-series  forecasting  prediction-interval  mean  standard-error  meta-analysis  meta-regression  network-meta-analysis  systematic-review  normal-distribution  multiple-regression  generalized-linear-model  poisson-distribution  poisson-regression  r  sas  cohens-kappa 
By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.