2
R:glm函数,族=“二项式”和“重量”规格
我对体重与family =“ binomial”在glm中的工作方式非常困惑。在我的理解中,具有family =“ binomial”的glm的可能性指定如下: ,其中y是“观察到的成功比例”,n是已知的试验次数。ynf(y)=(nny)pny(1−p)n(1−y)=exp(n[ylogp1−p−(−log(1−p))]+log(nny))f(y)=(nny)pny(1−p)n(1−y)=exp(n[ylogp1−p−(−log(1−p))]+log(nny)) f(y) = {n\choose{ny}} p^{ny} (1-p)^{n(1-y)} = \exp \left(n \left[ y \log \frac{p}{1-p} - \left(-\log (1-p)\right) \right] + \log {n \choose ny}\right) yyynnn 以我的理解,成功概率ppp由一些线性系数\ beta参数ββ\beta化为p=p(β)p=p(β)p=p(\beta)并且glm函数带有family =“ binomial”搜索: argmaxβ∑ilogf(yi).argmaxβ∑ilogf(yi). \textrm{arg}\max_{\beta} \sum_i \log f(y_i). 然后可以将此优化问题简化为: arg 最大β∑一世日志F(y一世)= arg 最大值β∑一世ñ一世[ y一世日志p (β)1 − p (β)- (- 日志(1 − …