3
使用Pearson相关和线性回归的Bonferroni校正
我正在针对3个DV的5个IV(5个人格特质,性格外向,和agree,尽责,神经质,开放)运行统计数据,包括PCT态度,CBT态度,PCT与CBT态度。我还添加了年龄和性别,以查看还有其他影响。 我正在测试以查看人格特征是否可以预测DV的态度。 最初,我对所有变量都使用了Pearson相关性(45个测试)。 主要发现是外向性与PCT态度在p = 0.05相关。但是,当我进行45次测试时,我对Bonferroni进行了alpha = 0.05 / 45 = 0.001的校正,因此这一发现无关紧要。 然后,我对所有变量进行了简单的线性回归,对于PCT态度,外向性再次很重要。如果我进行Bonferroni校正,那么它再次显得微不足道。 问题: 我需要Bonferroni纠正Pearson的相关性吗? 如果我这样做了,因此对PCT的态度无忧无虑,那么进行线性回归还有意义吗? 如果我进行线性回归,是否还需要对此进行Bonferroni校正? 我只报告校正后的值还是未校正和校正后的值?