回归与方差分析的差异(R中的aov与lm)
我一直给人的印象是,回归只是方差分析的一种更一般的形式,其结果是相同的。但是,最近,我对同一数据进行了回归和方差分析,结果差异很大。也就是说,在回归模型中,主效应和相互作用都非常显着,而在方差分析中,一个主效应并不显着。我希望这与交互有关,但是我不清楚这两种对相同问题进行建模的方式有何不同。如果重要的话,一个预测器是分类的,另一个是连续的,如下面的模拟所示。 这是一个示例,说明我的数据看起来如何以及正在执行的分析,但是结果中没有相同的p值或影响显着(上面概述了我的实际结果): group<-c(1,1,1,0,0,0) moderator<-c(1,2,3,4,5,6) score<-c(6,3,8,5,7,4) summary(lm(score~group*moderator)) summary(aov(score~group*moderator))