关于《纽约时报》滥用统计方法的文章
我指的是这篇文章:http : //www.nytimes.com/2011/01/11/science/11esp.html 考虑以下实验。假设有理由相信硬币的重量略偏于头部。在测试中,硬币在1,000的硬币中冒出527次。 这是否是代币已加权的重要证据? 古典分析说是的。有了一个公平的硬币,在1,000次翻转中获得527个或更多的磁头的机会就小于传统分界点的20分之一或5%。换句话说,实验发现加权硬币的证据“具有95%的置信度”。 然而,许多统计学家并不买账。20个中的一个是一千次掷出526以上的任何头的概率。即,它是翻转概率527,翻转概率528、529等等的总和。 但是实验并未找到该范围内的所有数字。他们发现只有一个-527。因此,这些专家说,如果硬币被加权,则计算得到那个数字-527的概率会更准确,然后将硬币与获得相同数字的概率进行比较。公平。 统计学家保罗·斯派克曼(Paul Speckman)和心理学家杰夫·劳德(Jeff Rouder)一起提供了例子,统计学家可以证明这个比率不能高于4:1。 第一个问题:这对我来说是新的。有没有人提供我可以找到精确计算的参考,和/或您可以通过自己给我精确计算来帮助我,和/或您可以指出一些可以在其中找到相似示例的材料吗? 贝叶斯设计了一种方法,可以在出现新证据时更新假设的可能性。 因此,在评估给定发现的强度时,贝叶斯分析(发音为BAYZ-ee-un)会纳入研究以外的已知概率(如果有)。 它可能被称为“是的,正确的”效果。如果一项研究发现金橘可将心脏病风险降低90%,一种疗法可在一周内治愈酒精成瘾,敏感的父母生女孩的可能性是男孩的两倍,那么贝叶斯的反应与本地怀疑论者:是的,对。研究结果与世界上可观察到的结果进行权衡。 在至少一个医学领域–诊断筛选测试–研究人员已经使用已知的概率来评估新发现。例如,一项新的测谎测试可能具有90%的准确率,可以正确标记10个骗子中的9个。但是,如果将其提供给100个已知已经包括10个骗子的人群,那么这项测试的效果就不那么令人印象深刻了。 它可以正确识别10个撒谎者中的9个,并且错失1个;但错误地将其他90个中的9个标识为说谎。将所谓的“真实肯定”(9)除以测试标记的总人数(18),得出的准确率为50%。“假阳性”和“假阴性”取决于人口中已知的比率。 第二个问题:您如何用这种方法正确判断一个新发现是否“真实”?并且:由于使用了一些预先设定的先验概率,这是否不像5%屏障那样任意?