6
网格无单色矩形的着色
更新:所有无单色矩形4色的障碍物集(即可着色和不可着色网格大小之间的NxM“屏障”)现在是已知的。 任何人都愿意尝试5种颜色吗?;) 拉姆西理论引起以下问题。 考虑 ×网格图的着色。只要将四个具有相同颜色的单元格排列为某个矩形的角,就会存在A。例如,如果和具有相同的颜色,则它们将形成单色矩形。同样,和如果用相同的颜色着色,则会形成单色矩形。Ñ 米(0 ,0 ),(0 ,1 ),(1 ,1 ),(1 ,0 )(2 ,2 ),(2 ,6 ),(3 ,6 ),(3 ,2 )ķkkñnn米mmmonochromatic rectangle(0 ,0 ),(0 ,1 ),(1 ,1 ),(0,0),(0,1),(1,1),(0,0), (0,1), (1,1),(1 ,0 )(1,0)(1,0)(2 ,2 ),(2 ,6 ),(3 ,6 ),(2,2),(2,6),(3,6),(2,2), (2,6), (3,6),(3 ,2 )(3,2)(3,2) 问题:是否存在不包含单色矩形的 x网格图的色?如果是这样,请提供明确的颜色。17 17444171717171717 一些已知事实: 161616 ×是色的,没有单色矩形,但是已知的着色方案似乎没有扩展到 ×情况。(我省略了已知的 …