1
为什么Mantel的考试比Moran的I更受青睐?
Mantel的测试广泛用于生物学研究中,以检查动物的空间分布(在空间中)与它们的遗传相关性,侵略率或其他属性之间的相关性。许多优秀的期刊正在使用它( PNAS,动物行为,分子生态学...)。 我捏造了一些自然界中可能出现的模式,但是Mantel的测试似乎无法检测到它们。另一方面,Moran's I的结果更好(请参见各图下的p值)。 为什么科学家们不使用莫兰的我呢?有一些我看不到的隐藏原因吗?如果有某种原因,我如何知道(必须以不同的方式构造假设)以适当地使用我测试的Mantel或Moran的?一个真实的例子会有所帮助。 想象这种情况:每棵树上都有一个乌鸦的果园(17 x 17棵树)。每个乌鸦的“噪音”级别都可用,您想知道乌鸦的空间分布是否由它们发出的噪音决定。 至少有5种可能性: “羽毛鸟聚集在一起。” 相似的乌鸦越多,它们之间的地理距离(单个簇)越小。 “羽毛鸟聚集在一起。” 同样,乌鸦越相似,它们之间的地理距离就越小(多簇),但是一簇嘈杂的乌鸦不知道第二簇的存在(否则它们会融合成一个大簇)。 “单调趋势。” “异性相吸。” 类似的乌鸦不能站在一起。 “随机模式。” 噪声水平对空间分布没有重大影响。 对于每种情况,我都创建了一个点图并使用Mantel检验来计算相关性(不足为奇的是,其结果不显着,我永远也不会尝试在这些点模式之间找到线性关联)。 示例数据:( 尽可能压缩) r.gen <- seq(-100,100,5) r.val <- sample(r.gen, 289, replace=TRUE) z10 <- rep(0, times=10) z11 <- rep(0, times=11) r5 <- c(5,15,25,15,5) r71 <- c(5,20,40,50,40,20,5) r72 <- c(15,40,60,75,60,40,15) r73 <- c(25,50,75,100,75,50,25) rbPal …