Questions tagged «estimation»

这个标签太笼统了。请提供更具体的标签。对于有关特定估计量属性的问题,请改用[estimators]标签。




7
在小样本中矩方法可以击败最大似然性的示例?
最大似然估计器(MLE)渐近有效。我们看到实际的结果是,即使在小样本量下,它们通常也比矩量法(MoM)估计(当它们不同时)要好 在这里,“优于”是指在两者均无偏的情况下通常具有较小的方差,并且更一般地,通常具有较小的均方误差(MSE)。 问题出现了,但是: 在小样本中,MoM是否能击败MLE(例如MSE)? (在这种情况下,不是奇数/简并的情况-即考虑到ML存在的条件/渐近有效保持) 接下来的问题将是“小可以多大?” -也就是说,如果有示例,是否仍然有一些示例在相对较大的样本量(甚至所有有限的样本量)下仍然有效? [我可以找到一个有偏估计器的示例,它可以在有限样本中击败ML,但它不是MoM。] 追溯性地添加注释:我在这里的重点主要是单变量情况(这实际上是我潜在的好奇心来自何处)。我不想排除多变量情况,但我也不想特别涉入James-Stein估计的扩展讨论。

3
为什么样本标准差是有偏估计量?
根据维基百科有关标准偏差的无偏估计的文章,样本SD s=1n−1∑i=1n(xi−x¯¯¯)2−−−−−−−−−−−−−−−√s=1n−1∑i=1n(xi−x¯)2s = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2} 是总体SD的有偏估计。它指出。E(s2−−√)≠E(s2)−−−−−√E(s2)≠E(s2)E(\sqrt{s^2}) \neq \sqrt{E(s^2)} 注意 随机变量是独立的,每个xi∼N(μ,σ2)xi∼N(μ,σ2)x_{i} \sim N(\mu,\sigma^{2}) 我的问题有两个: 有偏见的证据是什么? 如何计算样本标准偏差的期望值 我的数学/统计知识只是中级。




1
计算科恩的Kappa方差(和标准误差)
Kappa()统计数据是由Cohen [1]在1960年引入的,用于测量两个评估者之间的一致性。然而,它的差异在相当长一段时间以来一直是矛盾的根源。κκ\kappa 我的问题是,对于大型样本,哪种方法是最佳计算方法?我倾向于相信由Fleiss [2]测试和验证的是正确的选择,但这似乎并不是唯一发表的似乎是正确的(并在相当近期的文献中使用)。 现在,我有两种具体方法来计算其渐近大样本方差: Fleiss,Cohen和Everitt发表的校正方法[2]。 增量法可以在Colgaton,2009 [4](第106页)的书中找到。 为了说明这种混淆,以下是Fleiss,Cohen和Everitt [2]的引文,重点是我的话: 在实现最终成功之前,许多人类的努力被反复失败所困扰。珠穆朗玛峰的缩放就是一个例子。西北通道的发现是第二次。推导正确的kappa标准误差是第三次。 因此,以下是发生的情况的小结: 1960年:科恩(Cohen)发表论文“名义尺度的一致性系数” [1],介绍了他的机会校正的两个评估者之间的一致性度量,称为。但是,他为方差计算发布了错误的公式。κκ\kappa 1968年:Everitt尝试更正它们,但他的公式也不正确。 1969年:Fleiss,Cohen和Everitt在论文“ Kappa和加权Kappa的大样本标准误差”中发表了正确的公式[2]。 1971年:Fleiss 用相同的名称发布了另一个统计信息(但有所不同),其方差公式不正确。κκ\kappa 1979年:Fleiss Nee和Landis出版了Fleiss的的更正公式。κκ\kappa 首先,请考虑以下符号。此表示法意味着将求和运算符应用于点所放置的维度中的所有元素: pi.=∑j=1kpij pi.=∑j=1kpij\ \ \ p_{i.} = \displaystyle\sum_{j=1}^{k} p_{ij} p.j=∑i=1kpij p.j=∑i=1kpij\ \ \ p_{.j} = \displaystyle\sum_{i=1}^{k} p_{ij} 现在,人们可以将Kappa计算为: κ^=po−pc1−pe κ^=po−pc1−pe\ \ \ \hat\kappa = \displaystyle\frac{p_o-p_c}{1-p_e} 在其中 po=∑i=1kpii po=∑i=1kpii\ \ …


3
手动计算逻辑回归95%置信区间与在R中使用confint()函数之间为什么会有区别?
亲爱的大家-我注意到我无法解释的怪事,可以吗?总之:在logistic回归模型中计算置信区间的手动方法和R函数confint()得出不同的结果。 我一直在研究Hosmer&Lemeshow的Applied Logistic回归(第二版)。在第3章中,有一个计算比值比和95%置信区间的示例。使用R,我可以轻松地重现模型: Call: glm(formula = dataset$CHD ~ as.factor(dataset$dich.age), family = "binomial") Deviance Residuals: Min 1Q Median 3Q Max -1.734 -0.847 -0.847 0.709 1.549 Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) -0.8408 0.2551 -3.296 0.00098 *** as.factor(dataset$dich.age)1 2.0935 0.5285 3.961 7.46e-05 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ …
34 r  regression  logistic  confidence-interval  profile-likelihood  correlation  mcmc  error  mixture  measurement  data-augmentation  r  logistic  goodness-of-fit  r  time-series  exponential  descriptive-statistics  average  expected-value  data-visualization  anova  teaching  hypothesis-testing  multivariate-analysis  r  r  mixed-model  clustering  categorical-data  unsupervised-learning  r  logistic  anova  binomial  estimation  variance  expected-value  r  r  anova  mixed-model  multiple-comparisons  repeated-measures  project-management  r  poisson-distribution  control-chart  project-management  regression  residuals  r  distributions  data-visualization  r  unbiased-estimator  kurtosis  expected-value  regression  spss  meta-analysis  r  censoring  regression  classification  data-mining  mixture 


2
如何找到评级的置信区间?
埃文·米勒(Evan Miller)的“ 如何不按平均评分进行排序 ”建议使用置信区间的下限来获得被评分项目的合计“分数”。但是,它使用的是伯努利模型:评级是竖起大拇指或竖起大拇指。 什么是使用其指定的离散分数的评级模型合理的置信区间至恒星,假设一个项目的评分数量可能会少吗?111kkk 我想我可以看到如何调整Wilson和Agresti-Coull区间的中心 p~=∑ni=1xi+z2α/2p0n+z2α/2p~=∑i=1nxi+zα/22p0n+zα/22\tilde{p} = \frac{\sum_{i=1}^n{x_i} + z_{\alpha/2}^2\; p_0}{n + z_{\alpha/2}^2} 其中或(可能更好)是所有项目的平均评分。但是,我不确定如何调整间隔的宽度。我(经修订)的最佳猜测是p0=k+12p0=k+12p_0 = \frac{k+1}{2} p~±zα/2n~∑ni=1(xi−p~)2+zα/2(p0−p~)2n~−−−−−−−−−−−−−−−−−−−−−−−−−√p~±zα/2n~∑i=1n(xi−p~)2+zα/2(p0−p~)2n~\tilde{p} \pm \frac{z_{\alpha/2}}{\tilde{n}} \sqrt{\frac{\sum_{i=1}^n{(x_i - \tilde{p})^2} + z_{\alpha/2}(p_0-\tilde{p})^2}{\tilde{n}}} 与,但我不能仅仅挥舞它作为Agresti-Coull的类比来证明其合理性,n~=n+z2α/2n~=n+zα/22\tilde{n} = n + z_{\alpha/2}^2 Estimate(X¯)±zα/2n~Estimate(Var(X))−−−−−−−−−−−−−−−√Estimate(X¯)±zα/2n~Estimate(Var(X))\text{Estimate}(\bar{X}) \pm \frac{z_{\alpha/2}}{\tilde{n}} \sqrt{\text{Estimate}(\text{Var}(X))} 是否有适用的标准置信区间?(请注意,我没有订阅任何期刊,也不能轻松访问大学图书馆;请务必提供适当的参考文献,但请补充实际结果!)

6
用于估计大致正态分布规模的鲁棒贝叶斯模型将是什么?
存在许多健壮的规模估计器。一个明显的例子是与标准偏差相关的中位数绝对偏差,即。在贝叶斯框架中,存在多种方法来可靠地估计大致正态分布的位置(例如,被异常值污染的正态),例如,可以假设数据的分布与分布或拉普拉斯分布相同。现在我的问题是:σ=MAD⋅1.4826σ=MAD⋅1.4826\sigma = \mathrm{MAD}\cdot1.4826 以鲁棒方式测量大致正态分布规模的贝叶斯模型在与MAD或类似鲁棒估计量相同的意义上是鲁棒的吗? 与MAD的情况一样,如果数据的分布实际上是正态分布的,那么贝叶斯模型可以逼近正态分布的SD,那将是很巧妙的。 编辑1: 一个模型的一个典型的例子假设数据时即防止污染/离群健壮是大致正常的使用是在状分布:yiyiy_i yi∼t(m,s,ν)yi∼t(m,s,ν)y_i \sim \mathrm{t}(m, s,\nu) 其中是平均值,是小数,是自由度。如果在和上具有适当的先验,则将是均值的估计值,它将对异常值具有鲁棒性。但是,由于s取决于\ nu,因此并不是y_i SD的一致估计。例如,如果\ nu将固定为4.0,并且上面的模型将适合\ mathrm {Norm}(\ mu = 0,\ sigma = 1)分布中的大量样本,则s小号ν 米,小号ν 米ÿ 我小号ÿ 我小号ν ν Ñ ø ř 米(μ = 0 ,σ = 1 )小号mmmsssνν\num,sm,sm, sνν\nummmyiyiy_isssyiyiy_isssνν\nuνν\nuNorm(μ=0,σ=1)Norm(μ=0,σ=1)\mathrm{Norm}(\mu=0,\sigma=1)sss大约是0.82 我要寻找的是一个健壮的模型,就像t模型一样,但是要使用SD代替平均值(或除平均值外)。 编辑2: 以下是R和JAGS中的一个编码示例,上面提到的t模型相对于均值如何更健壮。 # generating some contaminated data y <- c( …


By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.