1
如何在ARIMA模型的观察值48中加入创新的离群值?
我正在处理数据集。使用一些模型识别技术后,我得出了一个ARIMA(0,2,1)模型。 我使用R detectIO包TSA中的函数在对原始数据集进行第48次观察时检测到创新的离群值(IO)。 如何将这个离群值合并到模型中,以便将其用于预测?我不想使用ARIMAX模型,因为我可能无法根据R中的模型做出任何预测。还有其他方法可以做到吗? 以下是我的价值观: VALUE <- scan() 4.6 4.5 4.4 4.5 4.4 4.6 4.7 4.6 4.7 4.7 4.7 5.0 5.0 4.9 5.1 5.0 5.4 5.6 5.8 6.1 6.1 6.5 6.8 7.3 7.8 8.3 8.7 9.0 9.4 9.5 9.5 9.6 9.8 10.0 9.9 9.9 9.8 9.8 9.9 9.9 9.6 9.4 …
10
r
time-series
arima
outliers
hypergeometric
fishers-exact
r
time-series
intraclass-correlation
r
logistic
glmm
clogit
mixed-model
spss
repeated-measures
ancova
machine-learning
python
scikit-learn
distributions
data-transformation
stochastic-processes
web
standard-deviation
r
machine-learning
spatial
similarities
spatio-temporal
binomial
sparse
poisson-process
r
regression
nonparametric
r
regression
logistic
simulation
power-analysis
r
svm
random-forest
anova
repeated-measures
manova
regression
statistical-significance
cross-validation
group-differences
model-comparison
r
spatial
model-evaluation
parallel-computing
generalized-least-squares
r
stata
fitting
mixture
hypothesis-testing
categorical-data
hypothesis-testing
anova
statistical-significance
repeated-measures
likert
wilcoxon-mann-whitney
boxplot
statistical-significance
confidence-interval
forecasting
prediction-interval
regression
categorical-data
stata
least-squares
experiment-design
skewness
reliability
cronbachs-alpha
r
regression
splines
maximum-likelihood
modeling
likelihood-ratio
profile-likelihood
nested-models